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Abstract

Zero-knowledge proofs, introduced by Goldwasser, Micali, and Rackoff, are a fundamental
building block in theoretical cryptography with numerous applications. Still, the impact
of zero-knowledge proofs for building secure systems in practice has been modest at best.
Part of this can be explained by the economics of deploying new technology in the wild:
often introducing a trusted third party in lieu of a proof system achieves users’ security
goals with lower anticipated cost.

The goal of this thesis is to lower the cost of using zero-knowledge proofs in real-world
systems. This cost has two major components: the cost incurred by the proof system itself,
and the price paid to instantiate the security model the proof system relies on. Working
with my collaborators, I have contributed to reducing both of these costs:
• Cost of the security model. For many practical scenarios it is crucial that proofs be

non-interactive and succinct. In the standard model, non-interactive zero-knowledge
(NIZK) proofs do not exist for languages outside BPP (even with just computational
soundness). However, if the security model includes a trusted party, available for a
one-time setup phase, then NIZKs exist for all languages in NP. Soundness of the NIZK
depends on this trusted setup: if public parameters are not correctly generated, or if the
trusted party’s secret internal randomness is revealed, an attacker could convince the
verifier of false NP statements without being detected. We show how public parameters
for a class of NIZKs can be generated by a concretely-efficient multi-party protocol,
such that if at least one of the parties is honest, then the result is secure and can be
subsequently used for generating and verifying numerous proofs without any further
trust.
• Cost of the proof system. We have designed and built an open-source cryptographic

library, called libsnark, that provides efficient implementations of state-of-the-art zero-
knowledge proof constructions. Our library is the fastest and most comprehensive suite
of zero-knowledge proofs currently available.

Working in tandem, these contributions have achieved industrial impact, and are the main
efficiency enablers for Zerocash, a privacy-preserving payment system.

Thesis Supervisor: Ronald L. Rivest

Title: Institute Professor
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sampling of public parameters for succinct zero knowledge proofs.” In proceedings of the
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Chapter 1

Introduction

Suppose that a remote computer has data that it is not willing to reveal (e.g. DNA database

or cryptographic secrets). You have a program you would like to run on this data. The

computer runs the program for you and gives you the output. How can the computer

convince you (with a proof!) that the output is correct, without revealing the secret data?

This is a very general and important problem with many applications. Its essence

is captured by fascinating notion of zero-knowledge proofs [GMR89], a powerful crypto-

graphic tool with vast array of applications. Such applications include secure multi-party

computation [GMW87a, BGW88], electronic voting [KMO01, Gro05, Lip11], anonymous

credentials [BCKL08], group signatures [BW06, Gro06], among very many others. It would

not be overemphasis to say that, within theoretical cryptography, zero-knowledge proofs

are truly ubiquitous and indispensable.

Still, the impact of zero-knowledge proofs for building secure systems in practice has

been modest at best. In particular, until very recently all reported uses of zero-knowledge

proofs in the wild concerned proving very restricted NP statements: for example, knowl-

edge of a discrete logarithm, subspace membership and similar facts of evidentially alge-

braic nature. Part of this can be explained by the economics of deploying new technology

in the wild: often introducing a trusted third party in lieu of a proof system achieves users’

security goals with lower anticipated cost.

In recent years this landscape has significantly changed: we have seen emergence of

prototype implementations of generic zero-knowledge proof systems [PGHR13, BCG+13a,

BFR+13], as well deployment of real-world systems, such as Zerocash [BCG+14], that

crucially rely on zero-knowledge proofs for complex NP statements.

One can point at two catalysts for this: first, a new generation of zero-knowledge
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proofs where the proof length is much smaller than the complexity of the statement

[Mic00, GW11, BCCT12, BCI+13]; and second, new applications, especially globally dis-

tributed ledgers like Bitcoin [Nak09], creating a demand for privacy of computation. The

combination of two — concrete efficiency of modern proof systems, and lack of a univer-

sally trusted third party — means that, for certain applications, the economic calculus has

ceased to be one-sided.

The goal of this thesis is to lower the cost of using zero-knowledge proofs in real-

world systems. To elaborate on this goal and present the contributions of this thesis, the

rest of this chapter is organized as follows. Section 1.1 gives basic background on zero-

knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARK), the main object of

study of this thesis. zk-SNARK constructions can be applied to a wide range of security

applications, provided these constructions deliver good enough efficiency, and support

rich enough functionality. This is particularly true in scenarios where trust is hard to

come by, and in Section 1.2 we outline concrete applications of zk-SNARKs for globally

distributed ledgers. Finally, the cost of deploying zk-SNARKs has two major components:

the cost incurred by the proof system itself, and the price paid to instantiate the security

model the proof system relies on. Working with my collaborators, I have contributed to

lower both of these costs, and Section 1.3 outlines the main achievements of this thesis and

how they contribute to the practical deployment of zero-knowledge proofs.

1.1 Introduction to zk-SNARKs

The main object of study of this thesis is a special kind of Succinct Non-interactive AR-

gument of Knowledge (SNARK). Concretely, most of the time we will be working with

publicly-verifiable preprocessing zero-knowledge SNARK, or zk-SNARK for short. In this

section we provide basic background on zk-SNARKs, provide an informal definition,

compare zk-SNARKs with the more familiar notion of NIZKs. We now informally define

zk-SNARKs for arithmetic circuit satisfiability, and refer the reader to, e.g., [BCI+13] for a

formal definition.

For a field F, an F-arithmetic circuit takes inputs that are elements in F, and its gates

output elements in F. We naturally associate a circuit with the function it computes. To

model nondeterminism we consider circuits that have an input ~x ∈ Fn and an auxiliary

input~a ∈ Fh, called a witness. The circuits we consider only have bilinear gates.1 Arithmetic

1A gate with inputs y1, . . . , ym ∈ F is bilinear if the output is 〈~a, (1, y1, . . . , ym)〉 · 〈~b, (1, y1, . . . , ym)〉 for

10



circuit satisfiability is defined analogously to the boolean case, as follows.

Definition 1.1.1. The arithmetic circuit satisfiability problem of an F-arithmetic circuit

C : Fn × Fh → Fl is captured by the relation RC = {(~x,~a) ∈ Fn × Fh : C(~x,~a) = 0l}; its

language is LC = {~x ∈ Fn : ∃~a ∈ Fh s.t. C(~x,~a) = 0l}. We call ~x the input of C and ~a the

witness of C.

Given a field F, a (publicly-verifiable preprocessing) zk-SNARK for F-arithmetic

circuit satisfiability is a triple of polynomial-time algorithms (Gen, P, V):

• Gen(1λ, C) → (pk, vk). On input a security parameter λ (presented in unary) and an

F-arithmetic circuit C, the key generator Gen probabilistically samples a proving key pk

and a verification key vk. Both keys are published as public parameters and can be used,

any number of times, to prove/verify membership in LC.

• P(pk,~x,~a)→ π. On input a proving key pk and any (~x,~a) ∈ RC, the prover P outputs a

non-interactive proof π for the statement ~x ∈ LC.

• V(vk,~x, π)→ b. On input a verification key vk, an input ~x, and a proof π, the verifier V

outputs b = 1 if he is convinced that ~x ∈ LC.

A zk-SNARK satisfies the following properties.

Completeness. For every security parameter λ, any F-arithmetic circuit C, and any

(~x,~a) ∈ RC, the honest prover can convince the verifier. Namely, b = 1 almost surely in

the following experiment: (pk, vk)← Gen(1λ, C); π ← P(pk,~x,~a); b← V(vk,~x, π).

Succinctness. An honestly-generated proof π has Oλ(1) bits and V(vk,~x, π) runs in time

Oλ(|~x|). (Here, Oλ hides a fixed polynomial factor in λ.) Finally, succinctness is expressed

as three efficiency requirements: (i) the generator and the prover must run in time that is

polynomial in |C|; (ii) the verifier must run in time that is polynomial in |x|; and (iii) an

honestly-generated proof must have size poly(λ).

Proof of knowledge (and soundness). If the verifier accepts a proof output by a bounded

prover, then the prover “knows” a witness for the given instance. (In particular, soundness

holds against bounded provers.) Namely, for every poly(λ)-size adversary A, there is a

poly(λ)-size extractor E such that V(vk,~x, π) = 1 and (~x,~a) 6∈ RC with probability negl(λ)

in the following experiment: (pk, vk)← Gen(1λ, C); (~x, π)← A(pk, vk);~a← E(pk, vk).

some~a,~b ∈ Fm+1. These include addition, multiplication, negation, and constant gates.
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Perfect zero knowledge. An honestly-generated proof is perfect zero knowledge.Namely,

there is a polynomial-time simulator S such that for all stateful distinguishers D the

following two probabilities are equal:

Pr

 (~x,~a) ∈ RC

D(π) = 1

∣∣∣∣∣∣∣∣
(pk, vk)← Gen(1λ, C)

(~x,~a)← D(pk, vk)

π ← P(pk,~x,~a)


(the probability that D(π) = 1 on an honest proof)

and Pr

 (~x,~a) ∈ RC

D(π) = 1

∣∣∣∣∣∣∣∣
(pk, vk, trap)← S(1λ, C)

(~x,~a)← D(pk, vk)

π ← S(trap,~x)

 .

(the probability that D(π) = 1 on a simulated proof)

Both proof of knowledge and zero knowledge are essential to many interesting uses of

zk-SNARKs. Indeed, if we consider circuits C that verify assertions about cryptographic

primitives (such as using a knowledge of SHA-256 pre-image as a binding commitment).

Thus it does not suffice to merely know that, for a given input ~x, a witness for ~x ∈ LC exists.

Instead, proof of knowledge ensures that a witness can be efficiently found (by extracting

it from the prover) whenever the verifier accepts a proof. As for zero knowledge, it ensures

that a proof leaks no information about the witness, beyond the fact that ~x ∈ LC.

zk-SNARKs are related to a familiar cryptographic primitive: non-interactive zero-

knowledge proofs of knowledge (NIZKs). Both zk-SNARKs and NIZKs require a one-time

trusted setup of public parameters (proving and verification keys for zk-SNARKs, and a

common reference string for NIZKs). Both provide the same guarantees of completeness,

proof of knowledge, and zero knowledge. The difference lies in efficiency guarantees. In a

NIZK, the proof length and verification time depend on the NP language being proved.

For instance, for the language of circuit satisfiability, the proof length and verification

time in [GOS06b, GOS06a] are linear in the circuit size. Conversely, in a zk-SNARK, proof

length depends only on the security parameter, and verification time depends only on the

instance size (and security parameter) but not on the circuit or witness size.

Thus, zk-SNARKs can be thought of as “succinct NIZKs”, having short proofs and fast

verification times. Succinctness comes with a caveat: known zk-SNARK constructions rely

on stronger assumptions than NIZKs do. Yet, succinctness is a very attractive property

for a practical viewpoint, which may enable applications for which NIZKs would be

too inefficient. In fact, as we explain in Section 1.2, recent developments in the realm

of distributed systems have created applications for which both non-interactivity and

succinctness are crucial requirements.
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1.2 zk-SNARKs for distributed ledgers

Bitcoin is the first digital currency to achieve widespread adoption. The currency owes

its rise in part to the fact that, unlike traditional e-cash schemes [Cha82, CHL05, ST99], it

requires no trusted parties. Instead of appointing a central bank, Bitcoin uses a distributed

ledger known as the blockchain to store transactions carried out between users. Because

the blockchain is massively replicated by mutually-distrustful peers, the information it

contains is public.

The characteristics of distributed ledgers, like Bitcoin, mean that the following proof

system properties are especially useful:

• Non-interactivity. Because Bitcoin is globally distributed, the parties of the system

might simply not be online at the same time. This is especially true, if the statement to

be proved has to be verified by the participant in the system. For example, this is the

case when validity of transaction depends on secret information held by the prover; for

the same reason digital signatures are more appropriate than identification protocols.

• Succinctness. The raison d’être for blockchain is to enable global consensus between

untrusting parties, and thus the state of the blockchain is duplicated by every participant

node. The associated storage, network communication and computational complexity

requirements raise significant scalability challenges; in fact, Bitcoin core developers

argue that, for the health of the network, the size of individual Bitcoin blocks should

not exceed a couple megabytes, and individual transactions: couple hundreds of bytes.

Any additional data we might wish to store in the blockchain, including cryptographic

proofs, must be commensurate with this. Moreover, to ensure fast synchronization times

and reduce the risk of “orphan” blocks, the transactions should be cheap to verify (say,

order of milliseconds).

We now argue, by a way of example, that a cryptographic proof system satisfying these

two properties can be very useful for improving the scalability of distributed ledgers.

Reducing transaction sizes. Even without considering zero-knowledge, zk-SNARKs are

an effective tool for improving scalability of systems due to their succinctness. For example,

Bitcoin Pay to Script Hash (P2SH) transactions require that two pieces of information are

permanently stored on the blockchain: script matching the script hash and data which

makes the script evaluate to true. Consequently, more complex (and more interesting)

13



P2SH transactions take more of the valuable block space, require proportionally fees and

proportionally lower throughput.

However, P2SH spends can be scaled up by zk-SNARK proofs: we replace the script

and its data by a proof that script/data exists making the transaction valid; a condition the

algorithm A could check. No matter what the script size or the data size, the Blockchain

would only need to contain the script hash and 300 byte proof.

While best exemplified by P2SH spends, this idea can be generalized to handle other

transaction types as well. For example, to reduce size of Pay to Pubkey Hash, one would

omit all ECDSA signatures, listing the UTXO inputs (UTXOs are transactions that have

unspent outputs, and thus cannot be pruned from the blockchain) and a SNARK proof

attesting an existence of signature for each of them.

Improving the security of SPV clients. Clients following the Simple Payment Verification

(SPV) protocol lack the ability to authenticate whether or not their view of the blockchain,

provided by an untrusted source, complies with the consensus rules. Two major directions

in this area are proofs of authorized UTXO set modifications (for proving absence of

fraud), and fraud proofs (for establishing presence of it). Both would benefit from efficient

zk-SNARKs: in the former case, each block would be augmented by a compact SNARK

proof certifying correctness of the block; in the latter case a zk-SNARK would ascertain

existence of blockchain invariant violation, without burdening the client with its full

verification. We remark that many pruned UTXO set and checkpointing proposals rely on

similar techniques, and refer the reader to Bryan Bishop’s excellent overview talk from

Scaling Bitcoin, Montreal [Bis15] for more information.

Preventing centralization. A proposal to prevent mining centralization, non-outsourceable

scratch-off puzzles [MSKK15], rely on zk-SNARKs as the main ingredient in their technical

toolbox. Very roughly speaking, the proof-of-work system is modified so that a winning

solution s (e.g. a nonce that produces hash value under the difficulty threshold), can be

transformed into a different solution s′, such that: (a) s′ cannot be linked back to the origi-

nal solution s; and (b) s′ can be spent in a different coinbase transaction. This way, mining

pools have no incentive to form: any rational miner within the pool, would just spend

a solution himself, rather than sharing it with the pool operator. The zero-knowledge

property of zk-SNARKs ensures that such “traitors” cannot be caught.

Improving block propagation. An alternative proposal uses succinct verification to

speed-up block propagation time, as follows. In parallel with mining on the block

header for a new block, the miner would also produce a zk-SNARK proof for the fol-
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lowing statement: “each transaction belonging to hashMerkleRoot is valid with respect to

hashPrevBlock”. Doing so is a competitive advantage for the miner: easy to verify blocks

enjoy fast propagation and decreased orphaning rates.

Preventing economic obstacles. Threat to currency’s fungibility is a fundamental threat

to its adoption and, thus, scalability. A definite approach to ensure fungibility is making

all transactions private, while keeping the economic invariants intact. Here the blockchain

would store zero-knowledge proofs that unspent coins were properly transferred, but

would reveal nothing about the parties or amounts. This is the approach taken by Zerocash

[BCG+14].

1.3 Contributions of this thesis

The cost of deploying zk-SNARKs has two major components: the cost incurred by the

proof system itself, and the price paid to instantiate the security model the proof system

relies on. This thesis contributes to reducing both of these costs:

Cost of the security model. For many practical scenarios it is crucial that proofs be non-

interactive and succinct. In the standard model, non-interactive zero-knowledge (NIZK)

proofs do not exist for languages outside BPP (even with just computational soundness).

However, if the security model includes a trusted party, available for a one-time setup

phase, then NIZKs exist for all languages in NP [BFM88, GO94]. Soundness of the NIZK

depends on this trusted setup: if public parameters are not correctly generated, or if the

trusted party’s secret internal randomness is revealed, an attacker could convince the

verifier of false NP statements without being detected. In Chapter 3 we show how public

parameters for a class of NIZKs can be generated by a concretely-efficient multi-party

protocol, such that if at least one of the parties is honest, then the result is secure and can

be subsequently used for generating and verifying numerous proofs without any further

trust.

Cost of the proof system. We have designed and built an open-source cryptographic

library, called libsnark, that provides efficient implementations of state-of-the-art zero-

knowledge proof constructions. Our library is the fastest and most comprehensive suite of

zero-knowledge proofs currently available. The libsnark library was organically built and

extended to achieve the results reported in half a dozen papers [BCG+13a, BCTV14a,

BCTV14c, CTV15, BCG+14, BCG+15], each of which report about pieces of the ever-

growing library. To this date, libsnark remains the fastest and most comprehensive
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suite of zero knowledge proofs, and the implementation itself entails many algorithmic

and engineering details. In Chapter 2 we provide unified view of this cryptographic library,

focusing on the high-performance engineering aspects.

Working in tandem, these two contributions have achieved industrial impact, and are

the main efficiency enablers for Zerocash, a privacy-preserving payment system.
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Chapter 2

libsnark: a software library for succinct

zero-knowledge proofs

The goal of the libsnark library is to be the cryptographic library for succinct zero-

knowledge proofs. We built the libsnark library to be appealing to two types of users:

non-cryptographers who want high-level interfaces to enforce security policies; and re-

searchers who want to build new cryptographic primitives based on SNARKs. We can

cite more than fifty academic papers that build upon libsnark, and more than a couple

industrial start-ups that use libsnark, as indirect evidence for making a solid showing

towards this goal.

Development principles. When building libsnark we made careful choices about struc-

ture of the library, and aimed to ensure maximum generality of all its components, in-

cluding, algebraic routines, NP relations, NP reductions, and proof-system backends and

frontends. Using software engineering terms, we aimed for loose coupling (each compo-

nent of the library should have the least possible dependencies), and high cohesion (single

responsibility principle: do one thing and one thing well). In hindsight, the abstractions

achieved in libsnark have helped us ensure fast iteration, for example, owing to careful

reuse of general components, we were able to implement the [Gro16] proof system on the

same day the preprint appeared on ePrint.

The libsnark stack. At a high level, the libsnark library can be decomposed as pictured

in Figure 2.1. The foundation of the library is its shared algorithmic core; this includes

implementations of algebraic objects, in particular, finite fields and bilinear groups, and

algorithmic routines for performing essential algebraic transforms (e.g. polynomial eval-

uation and interpolation, or multi-scalar multiplication). The shared algorithmic core
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Figure 2.1: Overview of the libsnark stack. The three major pieces of the library are proof
system frontends, proof system backends, and the shared algorithmic core.

also implements routing networks. Proof-system backends build upon the algorithmic

core, and achieve zk-SNARKs for highly rigid relations, such as, circuit satisfiability. Fi-

nally, proof-system frontends implement and expose zk-SNARKs for higher-level relations,

such as, satisfiability of RAM programs. In particular, libsnark targets a custom CPU

architecture called TinyRAM that is specifically built to be easily verified by zk-SNARKs.

Internally, the frontends use “gadget” libraries to build circuits for checking these higher

level languages, and then apply backend proof systems for circuit satisfiability.

As mentioned above, the components of the libsnark stack are independent in that

each can be useful without the others:

• If one designed a pre-processing SNARK for circuits that is more efficient than ours,

it could be plugged into libsnark, and benefit from frontend proof systems (e.g. our

circuit generator for TinyRAM programs). Historically, this was the case for [PGHR13]

and [Gro16] proof-systems, which have since been incorporated in libsnark.

• If one designed a different CPU architecture than TinyRAM, it would only require

specifying the CPU transition function to benefit from our generic frontend reductions.

In particular, RAM to circuits reduction with routing, and RAM to circuits reduction

with hashing and proof-carrying data work for any load-store architecture.
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• If one had an NP problem already represented via arithmetic circuit satisfiability (for in-

stance, this is simple to achieve when considering “structured” computational problems

such as matrix multiplication or evaluating FFTs) then there is no need to use a frontend

proof system, so one could directly invoke our zk-SNARK.

• If one discovered a more efficient pairing-friendly group, its implementation could be

used with any of our backend proof systems. This has been both the case historically,

and is also true for industrial users of libsnark.

• If one discovered a more efficient multi-exponentiation algorithm, or more efficient way

to solve polynomial evaluation and interpolation problems, these improvements would

benefit all upper layers.

Of course, too much generality can harm performance and make systems hard to maintain.

Fortunately, the libsnark decomposition has worked well in practice — to the best of our

knowledge the combined reductions are quite tight, and breaking the layers of abstraction,

or fusing individual components, would give insignificant efficiency gains.

In addition to the three component groups (proof system frontends, backends, and

algorithmic core), libsnark also includes other auxiliary routines and data structures.

In particular, the library has components for serialization, profiling, random number

generation, and implements Merkle trees, sparse vectors, knowledge commitments, among

others. In this Chapter we focus of the algorithmic aspects of libsnark, and thus will not

discuss these routines or data structures in further detail.

Assumptions. To ensure soundness and zero-knowledge, libsnark relies on crypto-

graphic assumptions (mostly, knowledge-of-exponent assumptions in bilinear groups, and

standard assumptions about cryptographic hash functions), assumptions about random-

ness, and the execution environment. The library intentionally does not target resistance

against side-channel attacks. In particular, as all proof systems in libsnark are publicily

verifiable, these attacks do not matter for the SNARK verifiers; in the backend proof sys-

tems we reasonably expect that the frontend-to-backend reduction will not be side-channel

free. Therefore, while nice to have, a side-channel resistant backend alone would not be

effective for building side-channel resistant systems.

Code base. The libsnark library comprises about 26 000 lines of templatized C++, about

350 lines of hand-written x86-64 assembly, and a little over than 500 lines of Python. The

Python code is mostly used to emit test cases for unit testing, and assembly routines, used
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for high-performance implementations of finite field arithmetic and binary heaps, have

portable C++ alternatives.

Our cryptographic library primarily targets Linux (owing to the general availability of

high-performance Linux clusters), but libsnark has few external dependencies, in principle,

it should be easy to port libsnark to other systems. In fact, to achieve a demonstration at

CRYPTO 2013 [BCG+13a], an earlier version of libsnark was ported to Android phones

with ARM CPUs. Some downstream users of libsnark have ported parts of the library to

Windows, and macOS.

Roadmap. The rest of this chapter is organized as follows. In Section 2.1 we give a

10 000 ft glimpse of a typical pre-processing SNARK backend; this view puts key algebraic

problems in context, and provides the basis for discussing libsnark’s shared algorithmic

core. In Section 2.2 we survey the zk-SNARK backends available in libsnark, and in

Section 2.3 we survey the zk-SNARK frontends in libsnark, focusing our attention to

gadgetlib1, the “gadget” library used to implement all our frontend reductions. We

devote Section 2.4 to discuss the library’s shared algorithmic core. Finally, in section

Section 2.5 we discuss the impact of libsnark, and consider some future optimizations.

2.1 A taste of pre-processing zk-SNARKs

The language natively supported by many modern pre-processing zk-SNARK construc-

tions is that of quadratic arithmetic programs (QAPs), introduced by Gennaro et al. [GGPR13].

Definition 2.1.1. A quadratic arithmetic program (QAP) of size m and degree d over a field F

is a quadruple (~A,~B, ~C, Z), where each of ~A, ~B and ~C is a vector of m + 1 polynomials in F≤d−1[z],

and Z(z) ∈ F[z] is a monic polynomial of degree exactly d.

Definition 2.1.2. The satisfaction problem of a size-m QAP (~A,~B, ~C, Z) is the relationR(~A,~B,~C,Z)

of pairs (~x,~a) ∈ Fn × Fm satisfying the following conditions: (a) n ≤ m and xi = ai for

1 ≤ i ≤ n (that is,~a extends ~x); and (b) Z(z) divides the polynomial (A0(z) + ∑m
i=1 ai Ai(z)) ·

(B0(z) + ∑m
i=1 aiBi(z))− (C0(z) + ∑m

i=1 aiCi(z)).

Gennaro et al. [GGPR13] showed that QAP satisfiability problem is NP-complete, in

particular, they showed that arithmetic circuit satisfiability can be efficiently reduced to

QAP satisfiability. We now give a very brief sketch for a proof system targeting the QAP

satisfiability problem. This proof system first appeared in Ben-Sasson et al. [BCG+13a]

and follows the “linear PCP” approach put forth by Bitansky et al. [BCI+13].

20



We assume existence of a linear-only cryptographic encoding of Fr, that is, an encoding

Enc : Fr → {0, 1}∗ with the following properties:

• it is easy to verify that an alleged encoding is indeed in the image of Enc;

• given encodings e1, . . . , en, it is feasible to check whether quadratic relationship holds be-

tween the preimages of the encodings (that is, whether a degree-2 polynomial P(x1, . . . , xn)

evaluates to 0 on the vector of preimages x1, . . . , xn);

• Enc admits efficient computation of all Fr-linear homomorphisms, while making sure

that other operations are computationally intractable (“up to” the information leaked by

the quadratic predicates); and

• it provides a certain notion of one-way security to encoded elements.

We defer to [BCI+13] for full technical definition of linear-only encodings.

Construction 2.1.3 (A SNARK for QAPs (sketch)). The SNARK generator, prover and verifier

work as follows:

• Generator. On input QAP (~A,~B, ~C, Z), the SNARK generator G first picks a random field

element τ ∈ Fr. The generator uses τ to compute and output linear-only encodings Enc(Ai(τ)),

Enc(Bi(τ)), Enc(Ci(τ)), Enc(Z(τ)) (1 ≤ i ≤ m), as well as d linear-only encodings Enc(1),

Enc(τ), . . . , Enc(τd−1). The generator also picks three random field elements α, β, γ ∈ Fr

and outputs linear-only encodings of a random linear combination of Ai(τ), Bi(τ), Ci(τ);

more precisely, G also outputs the linear-only encodings Enc(αAi(τ) + βBi(τ) + γCi(τ)) for

1 ≤ i ≤ m, as well as Enc(α), Enc(β), Enc(γ).

• Prover. On input instance ~x and satisfying witness~a, the SNARK prover P uses~a to compute

the vector of coefficients~h of the polynomial

H(z) :=
(A0(z) + ∑m

i=1 ai Ai(z)) · (B0(z) + ∑m
i=1 aiBi(z))− (C0(z) + ∑m

i=1 aiCi(z))
Z(z)

.

As (~x,~a) ∈ R(~A,~B,~C,Z), the division above has no remainder. After having computed H(z), the

prover uses the linear-only encodings output by the SNARK generator G to obtain the following
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five components of the proof π:

πA := Enc

(
m

∑
i=n

ai Ai(τ)

)
πB := Enc

(
m

∑
i=n

aiBi(τ)

)

πC := Enc

(
m

∑
i=n

aiCi(τ)

)
πH := Enc

(
d−1

∑
i=0

hiτ
i

)
= Enc (H(τ))

πK := Enc

(
m

∑
i=n

ai(αAi(τ) + βBi(τ) + γCi(τ))

)

• Verifier. On input instance ~x and purported proof π, the zk-SNARK verifier V does the

following. It first checks that each component of the proof, that is, πA, πB, πC, πH and πK are

all in the image of Enc. Next, it performs two quadratic checks: first, it uses the encodings of

α, β, and γ, output by the generator G to test whether Enc(α) · πA + Enc(β) · πB + Enc(γ) ·
πC = πK holds. Next, it uses the instance ~x to compute three encodings χA = Enc(A0(τ) +

∑m
i=1 xi Ai(τ)), χB = Enc(B0(τ)+∑m

i=1 xiBi(τ)) and χC = Enc(C0(τ)+∑m
i=1 xiCi(τ)), and

tests whether (χA + πA) · (χB + πB) = πH · Enc(Z(τ)) + (χC + πC). The verifier accepts if

and only if all these tests succeed.

We now give a highly compressed overview of why the proof system above is complete,

sound, and explain that with minor modifications it can also be made zero-knowledge.

The main purpose of this sketch is to motivate the cryptographic and algorithmic problems

encountered by G, P and V, and we refer the reader to [BCG+13a],[BCI+13] for details.

Completeness. We can convince ourselves that the proofs output by an honest prover

always satisfy the verifier’s checks. Indeed, their elements are in the domain of Enc (so

preimage checks are satisfied), the element πK is indeed a linear combination of πA, πB, and

πC, with coefficients α, β, γ (so verifier’s first quadratic test is satisfied), and the verifier’s

second quadratic check is exactly implied by the satisfaction of QAP. More precisely,

(A0(z) + ∑m
i=1 ai Ai(z)) · (B0(z) + ∑m

i=1 aiBi(z))− (C0(z) + ∑m
i=1 aiCi(z)) = H(z) · Z(z) is a

polynomial identity, so it continues to hold when the formal variable z is replaced by the

generator’s concrete choice of z := τ.

Knowledge soundness. As part of its one-way security, we require that linear-only

encoding Enc satisfies a certain notion of extractability: for any algorithm A that, on

input encodings Enc(u1), . . . , Enc(un), outputs an encoding e in the image of Enc, there

exists an extractor EA, which on the same inputs as A (including A’s randomness tape),

outputs a linear combination c1, . . . , cn, “explaining” the linear-only homomorphism
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applied by A. That is, EA outputs ~c for which the following linear relationship holds:

e = c1 · Enc(u1) + · · ·+ cn · Enc(un)) = Enc(c1 · u1 + · · ·+ cn · un).

The output of the zk-SNARK prover algorithm P consists of six valid encodings, there-

fore, under the aforementioned security assumption, there exists an extractor EP, out-

putting linear combinations that “explain” each of the proof elements. In particular,

elements πA, πB, πC, and πK allows one to recover the witness vector ~a, whereas the

element πH, allows one to recover the coefficient vector~h. Because verifier’s checks pass,

the vectors~a and~h jointly satisfy the QAP polynomial divisibility equation for z = τ. With

more work, and relying on the hiding properties of Enc, one can show that~a and~h make

the equation to be a polynomial identity, and therefore (~x,~a) ∈ R(~A,~B,~C,Z).

Zero-knowledge. To make our toy proof system zero-knowledge one can apply the

following trick: add three random multiples of Z(τ) to πA, πB, and πC, respectively,

and adjust the computations of πK and πH to be consistent with these choices. This

choice makes πA, πB, and πC uniformly random, while the proof elements πK and πH are

uniquely determined by the values of πA, πB, and πC, and the satisfiability of verifier’s

quadratic check. One can also prove that such strategy does not spoil the knowledge

soundness of our proof system; this comes from the fact that Z(z) has higher degree than

all polynomials Ai(z), Bi(z), and Ci(z), and therefore the extractor can uniquely cancel out

the contribution of the randomization terms.

The above sketch can be made formal, and we do so in Appendix A. Apart from making

sure that the proof system can be made work in abstract, there are three natural questions

that need to be answered to make this proof system work in practice:

1. Security. Do there exist linear-only encodings Enc for which the necessary security

assumptions are plausible?

2. Efficiency. How can one efficiently instantiate the algorithms G, P, and V?

3. Expressivity. Does the language of QAP satisfiability capture useful problems? That

is, given an “interesting” NP relation, can we write down the polynomials (~A,~B, ~C, Z)?

The answers to the first two questions are both “yes”, and we deal with those in Section 2.4.

Jumping ahead, the map Enc : x → (gx, gαx) for certain bilinear groups over elliptic curves

is believed to satisfy the necessary security and functionality requirements; this moti-

vates libsnark’s cryptographic core. Similarly, the main computations performed by the
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zk-SNARK generator and prover are special instances of widely studied questions about

polynomial evaluation interpolation, and multi-scalar multiplication. These motivate the

bulk of libsnark’s algorithmic core.

In the next two Sections we focus our attention on the question about expressivity:

in Section 2.2 we will see that span programs capture all of NP via elegant reductions

from circuit satisfiability problems, and in we will show that there are modular ways to

“program” circuits, yielding to efficient and generic implementations.

2.2 Backend relations

As mentioned in Section 2.1, most modern pre-processing zk-SNARK backends are built

for various kinds of polynomial span programs, such as, quadratic arithmetic programs

[GGPR13] or square span programs [DFGK14]. As noticed by Gennaro et al., questions

about a witness vector w simultaneously satisfying n polynomial constraints can often be

reduced to a question about divisibility of degree n polynomials. Relying on Schwartz–

Zippel lemma, the divisibility question can be probabilistically verified by performing the

check at just one randomly chosen point.

For example, suppose you have n constraints of the form 〈ai,j, wj〉 · 〈bi,j, wj〉 = 〈ci,j, wj〉,
specified by three constant matrices A, B and C with entries ai,j, bi,j, ci,j. Such constraint

systems naturally capture arithmetic circuits with bilinear gates: when w is a complete

assignment to the circuit’s m wires, the inner products 〈ai,j, wj〉 and 〈bi,j, wj〉 bundle the

left and right inputs of the j-th bilinear gate, and 〈ci,j, wj〉 can be chosen to equal the j-th

gates output wire.

Now pick n field elements σ1, . . . , σn, and let Ai(z), Bi(z) and Ci(z) be the unique

polynomials of degree less than n satisfying Ai(σj) = ai,j, Bi(σj) = bi,j and Ci(σj) = ci,j

for all 1 ≤ j ≤ n. One can see that n original constraints are satisfied if and only if the

polynomial QAP(z) := (∑m
i=1 wi Ai(z)) · (∑m

i=1 wiBi(z))− (∑m
i=1 wiCi(z)) vanishes on the

set {σ1, . . . , σn}, or, equivalently, QAP(z) is divisible by Z(z) := ∏n
i=1(z− σi).

The above reduction, due to Gennaro et al. [GGPR13], is particularly tight: a circuit with

n gates gives rise to a single equation about polynomials of degree at most n. Accordingly,

the main algebraic tools of libsnark backend proof systems involve solving polynomial

evaluation and interpolation problems, whereas the main cryptographic tools facilitate

evaluation and divisibility checking of encoded polynomials.

The approaches to instantiating cryptographic encodings and performing the divisi-
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bility checks, vary a great deal both in terms of the performance and properties achieved,

as well as in terms of the cryptographic assumptions. For example, the r1cs_ppzksnark

proof system, based on [PGHR13, BCTV14c], relies on q-type knowledge-of-exponent

assumptions and requires 5 pairing-based checks: 3 check validity of cryptographic en-

codings, 1 check that answer lies in correct polynomial span, and 1 check the polynomial

divisibility. In contrast, the [Gro16] relies on much strong generic group model and per-

forms just one pairing-based check. We refer reader to libsnark’s performance comparison1

for further details.

2.3 Proof system frontends

The goal of frontend proof systems is to enable obtaining zk-SNARKs for high level,

developer-friendly NP languages. As all libsnark backends provide zk-SNARKs for (es-

sentially) circuit satisfiability, the proof system frontends work by directly translating

these higher-level specifications into arithmetic circuits, or by providing universal circuits

whose inputs are high-level representations. In libsnark example of a direct translation is

gadgetlib1, the C++ library of composable circuit “gadgets”, whereas the latter approach

is realized by our universal circuits for load-store RAM architectures.

The RAM reductions are covered in extensive detail in [BCG+13a, BCTV14c, BCTV14a],

while gadgetlib1, the main software engineering enabler for these reductions, has re-

ceived more narrow exposition. Therefore, we devote most of this section to describing

gadgetlib1 and its main design principles.

2.3.1 gadgetlib1: library for “programming” circuits

The performance of backend zk-SNARK generator and prover algorithms highly depend

on the complexity of the particular NP relation R. More precisely, both the generator

and prover work in time and space that is quasilinear in size of the circuit deciding R.

Therefore, it is highly desirable to obtain circuits of smallest possible size: indeed, any

inefficiencies in the circuit representation will be paid for by every single prover.

The compiler approach. Prior work has explored a particular route to obtaining circuits:

write a program decidingR in some high-level programming language, such as, C, and

use a circuit generator to obtain an arithmetic circuit for the backend zk-SNARK. The main

1https://github.com/scipr-lab/libsnark/blob/master/libsnark/zk_proof_systems/ppzksnark/README.md
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benefit of this approach is developer convenience: developers can use a familiar language,

and benefit from existing tooling, testing infrastructure, etc.

Importance of non-determinism. However, as we show in Section 2.3.3 this approach

can yield results that are an integer multiple away from tailored approaches. At high

level, the main reason for this is inefficient use of non-determinism: for many functions

f , computing the value of f is significantly more complicated, than checking whether

an already computed answer is correct. In particular, checkers can benefit from non-

deterministic auxiliary inputs, while these inputs are not available when reducing from a

high-level program which computes the answer.

To illustrate the benefits of non-determinism consider the task of deciding whether

or not two n-element lists are sorted copies of each other. The most efficient circuits for

sorting are of size O(n log2 n); to our knowledge this is the best approach that does use

non-determinism.2 However, if our relation can depend on non-deterministic inputs, a

much better O(n log n) approach is possible: use a routing network [Ben65, Wak68] to

implement a permutation between the two lists. Here the non-deterministic inputs are

switch settings for the routing network; these need to be computed separately by the

zk-SNARK prover, but cost of doing so is negligible, compared to O(log n) multiplicative

blow-up in the cryptographic cost for the sorting network.

The design of gadgetlib1. To obtain maximally efficient low-level representations of

interesting NP relations, we built a library for wiring non-deterministic circuit “gadgets”,

emphasizing modularity and non-determinism. The gadgetlib1 library is a suite of

optimized subcircuit “gadgets” together with means of effectively composing, testing, and

debugging them. Each gadget is a pair of two algorithms: instance map, which generates the

circuit wiring, and witness map, which computes the wire values of the gadget, including

assignments to non-deterministically set wires. It is exactly the use of non-determinism

that sets apart gadget from a traditional arithmetic circuit, where all wire values can be

computed directly from the circuit wiring.

Importance of modularity. An obvious reason for building circuits out of modular parts

is, of course, programmer convenience and work saved by component reuse. However,

the use of non-determinism presents additional challenges to ensure soundness. For

deterministic circuits completeness and soundness are naturally linked: by computing the

unique answer each gate contributes to enforcing correctness. Non-deterministic circuits
2There exist asymptotically smaller sorting networks, e.g., O(n log n)-sized AKS sorting network [AKS83]

or the recent zig-zag sort [Goo14]. However, the O notation for all of these constructions hide large constant
terms that dwarf log n for all practically relevant n.
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stand in stark contrast with this: an existence of a correct wire assignment does not imply

a non-existence of incorrect one. Let us highlight this by an example.

Consider the task of verifying integer division: given three inputs a, b and c accept if

and only if c = ba/bc. Let us further assume that a and b are restricted to some range,

e.g. 0 ≤ a, b < 2k. Standard deterministic circuits computing the result of the division

are of size O(k2). A non-deterministic solution would be to guess remainder r, and check

that the following two conditions are satisfied: a = bc + r and 0 ≤ r < 2k; both of these

conditions together can be checked by using an O(k)-gate circuit. In addition to relying on

“native” field arithmetic, provided by arithmetic circuits (assuming that field characteristic

is higher than 2r, this lets one compute the value bc using just one bilinear gate), we use

further non-determinism to ensure that 0 ≤ r < 2k. That is, we non-deterministically guess

the k bits bi of r, and enforce that r = ∑k−1
i=0 bi2i, as well as bi ∈ {0, 1}. The latter can be

done by one bilinear constraint: bi(1− bi) = 0.

In the deterministic case, if any gate is forgotten, the circuit will likely yield an incorrect

answer. In the non-deterministic case, the witness map will correctly compute c := ba/bc,
even if one of the checks is absent. Of course, if any of the two checks are absent, a careful

choice of r can satisfy the gadget for any malicious answer c. To avoid creating gadgets with

vacuous guarantees gadgetlib1 emphasizes modularity to make security audits easier,

and use of negative tests (checking that unsatisfiable assignments are indeed rejected by

the non-deterministic circuit). Ideally, the counter-example checking would be done by

static analysis techniques (e.g. SMT solvers), and soundness would be assured by formal

verification methods; we leave these improvements for further work.

2.3.2 RAM reductions and TinyRAM

As we will see in Section 2.3.3, the direct “gadget” approach described in the previous

section lets one obtain circuits of very small size. However, this efficiency comes with

two drawbacks. First, directly wiring “gadgets” requires high programmer effort — our

use-case of SHA-256 took a week of effort from two PhD students with high expertise

in practical proof systems, whereas specifying this relation in a high-level programming

language would dramatically decrease the required effort and expertise.

Second, direct approaches necessarily require knowledge of the particular relation

ahead of time, as the zk-SNARK setup algorithm immutably encodes the relation in the

common reference string. Therefore even minor changes to the relation require another

invocation of a trusted third party to execute the SNARK setup algorithm.

27



In a sense, the gadget writing can be compared to directly writing “circuit silicon”, or

constructing ASICs. An alternative approach, implemented in two libsnark proof systems,

is to construct “silicon” capable of executing any computation of a RAM machine. To

this end libsnark implements a CPU architecture, called TinyRAM [BCG+13b], tailored to

be particularly suitable for zk-SNARK proof systems, and two approaches of verifying

TinyRAM programs: universal circuits using routing, and recursive proof composition with

memory delegation.

Universal circuits for RAM programs. To verify execution of any RAM computation,

libsnark follows the blueprint laid out in [BCGT13, BCTV14c], and constructs a circuit

capable of verifying any RAM computation that runs for no more than T steps. Thus

the trusted zk-SNARK generator depends only on this time bound T, but not on the

computation itself.

The universal circuit consists of three parts. First, to verify correct execution of non-

memory operations performed by the RAM CPU, the circuit has wires encoding the entire

execution trace (that is, the CPU state, including program counter, registers, flags, etc at

time t = 0, 1, . . . ), and T− 1 subcircuits verifying successive CPU state transition between

these T states. Second, the circuit also has wires to encode the entire memory access trace.

Each entry in the memory trace includes the time step t, memory address addr, indication

whether this address was read from or written to, and the contents of this address after

this operation. Unlike the CPU trace, which is sorted by time, the memory trace is sorted

first by the address, with ties broken by time. Given such trace it is easy to write t− 1

subcircuits that check that consecutive access to the same memory location yield consistent

results (e.g. after write instruction the next read instruction returns the same value; values

don’t change between read instructions; etc). Finally, to ensure the consistency between

time and memory traces, the universal circuit also includes a routing network that checks

that the two traces are permutations of each other.

TinyRAM. The above approach yields a universal circuit of size O(T log T + cT), where

the constant c depends on the complexity of checking the CPU transition function. The

constant for the O(T log T) term is just 2, therefore in practice the O(cT) term dominates,

and to minimize this c, libsnark implements a RISC CPU architecture that is tailored

for fast verification. As opposed to architectures like Intel x86 that are tailored for fast

execution, and thus benefit from highly expressive instruction sets and their extensions,

TinyRAM has only 16 instruction types, and can be implemented in around 1000 bilinear

gates. We refer to [BCG+13a] for further details and performance comparison.
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RAM program verification from recursive proof composition. Universal circuit ap-

proach has an inherent scalability drawback: the SNARK prover needs to produce the wire

for this universal circuit, encoding the entire computation, and then perform global opera-

tions, such as FFTs, on this assignment. To avoid “carrying around” the entire computation

trace, libsnark uses recursive proof composition [Val08, CT10] and memory delegation

techniques to obtain proof system where setup algorithm is universal, yet does not depend

on the time bound T, and prover only needs memory proportional to space complexity of

the original RAM computation.

In a nutshell, this construction, presented in [BCTV14a] works as follows. Instead of

maintaining the contents of memory in a memory trace inside the circuit, we will outsource

handling of the memory to the (untrusted) prover and enforce the correctness using Merkle

trees. More precisely, we construct a circuit C consisting of three parts: (a) a CPU checker,

capable of verifying one RAM machine step; (b) a Merkle tree checker, capable of verifying

correctness of one read or store instruction; and (c) a SNARK verifier, for recursively

verifying this computation. At each step of the RAM computation, the SNARK prover

convinces C that: computation up to this point was executed correctly (i.e. there exists a

SNARK proof for this statement), the current RAM step is executed correctly, and that the

only change in the Merkle tree is one requested by the RAM CPU.

2.3.3 Case study: an arithmetic circuit for verifying SHA-256’s compres-

sion function

The vast majority of work in Zerocash’s NP statement is verifying computations ofH, the

compression function of SHA-256. In this Section we briefly contrast the approaches of

obtaining efficient circuit implementation forH.

We wish to construct an arithmetic circuit CSHA256 such that, for every 256-bit digest

h and 512-bit input x, (h, x) ∈ RCSHA256
if and only if h = H(x). Naturally, our goal is to

minimize the size of CSHA256. Our high-level strategy is to construct CSHA256, piece by piece,

by closely following the SHA-256 official specification [Nat12]. 3 For each subcomputation

of SHA-256, we use nondeterminism and field operations to verify the subcomputation

using as few gates as possible.

Overview of SHA-256’s compression function. The primitive unit in SHA-256 is a 32-bit

word. All subcomputations are simple word operations: three bitwise operations (and,
3The official specification matches common practical SHA256 implementations. Our intuition that as a

cryptographic heuristic there should not be “shortcuts” in the hash function’s internal structure.
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or, xor), shift-right, rotate-right, and addition modulo 232. The compression function

internally has a state of 8 words, initialized to a fixed value, and then transformed in 64

successive rounds by following the 64-word message schedule (deduced from the input x).

The 256-bit output is the concatenation of the 8 words of the final state.

Representing a state. We find that, for each word operation (except for addition modulo

232), it is more efficient to verify the operation when its inputs are represented as separate

wires, each carrying a bit. Thus, CSHA256 maintains the 8-word state as 256 individual

wires, and the 64-word message schedule as 64 · 32 wires.

Addition modulo 32. To verify addition modulo 232 we use techniques employed in

previous work [PGHR13, BCG+13a, BCTV14c]. Given two words A and B, we compute

α := ∑31
i=0 2i(Ai + Bi). Because F has characteristic larger than 233, there is no wrap around;

thus, field addition coincides with integer addition. We then make a non-deterministic

guess for the 33 bits αi of α (including carry), and enforce consistency by requiring that

α = ∑32
i=0 2iαi. To ensure that each αi ∈ {0, 1}, we use a 33-gate subcircuit computing

αi(αi − 1), all of which must be 0 for the subcircuit to be satisfiable. Because our finite field

has high characteristic, the fact that these checks are satisfied modulo p, mean that they

also pass over integers as well. Overall, verifying addition modulo 232 only requires 34

gates. This approach extends in a straightforward way to summation of more than two

terms.

Verifying the SHA-256 message schedule. The first 16 words Wi of the message sched-

ule are the 16 words of the 512-bit input x. The remaining 48 words are computed as

Wt := σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16, where σ0(W) := rotr7(W)⊕ rotr18(W)⊕
shr3(W) and σ1 has the same structure but different rotation and shift constants.

The rotation and shift amounts are constants, so rotates and shifts can be achieved

by suitable wiring to previously computed bits (or the constant 0 for high-order bits in

shr). Thus, since the XOR of 3 bits can be computed using 2 gates, both σ0 and σ1 can be

computed in 64 gates. We then compute (or more precisely, guess and verify) the addition

modulo 232 of the four terms.

Verifying the SHA-256 round function. The round function modifies the 8-word state by

changing two of its words and then permuting the 8-word result. Each of the two modified

words is a sum modulo 232 of (i) round-specific constant words Kt; (ii) message schedule

words Wt; and (iii) words obtained by applying simple functions to state words. Two

of those functions are bitwise majority (Maj(A, B, C)i = 0 if Ai + Bi + Ci ≤ 1 else 1) and

bitwise choice (Ch(A, B, C)i = Bi if Ai = 1, else Ci). We verify correct computation of Maj
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using 2 gates per output bit, and Ch with 1. Then, instead of copying 6 unchanged state

words to obtain the permuted result, we make the permutation implicit in the circuit’s

wiring, by using output wires of previous sub-computations (sometimes reaching 4 round

functions back) as input wires to the current sub-computation.

Performance. Overall, we obtain an arithmetic circuit CSHA256 for verifying SHA-256’s

compression function with less than 30 000 arithmetic gates. See Figure 2.2 for a breakdown

of gate counts.

Gate count for CSHA256

Message schedule 8 032
All rounds 19 584

1 round (of 64) 306
Finalize 288
Total 27 904

Figure 2.2: Size of circuit CSHA256 for SHA-256’s compression function.

Comparison with generic approaches. We constructed the circuit CSHA256 from scratch.

We could have instead opted for more generic approaches: implement SHA-256’s com-

pression function in a higher-level language, and use a circuit generator to obtain a

corresponding circuit. However, generic approaches are significantly more expensive for

our application, as we now explain.

Starting from the SHA-256 implementation in PolarSSL (a popular cryptographic li-

brary) [Pol13], it is fairly straightforward to write a C program for computingH. We wrote

such a program, and gave it as input to the circuit generator of [PGHR13]. The output

circuit had 58160 gates, more than twice larger than our hand-optimized circuit.

Alternatively, we also compiled the same C program to TinyRAM, which is the ar-

chitecture supported in [BCG+13a]; we obtained a 5371-instruction assembly code that

takes 5704 cycles to execute on TinyRAM. We could then invoke the circuit generator in

[BCG+13a] when given this TinyRAM program and time bound. However, each TinyRAM

cycle costs ≈ 1000 gates, so the resulting circuit would have at least 5.7 · 106 gates, i.e., over

190 times larger than our circuit.1 A similar computation holds for the circuit generator in

[BCTV14c], which supports an even more flexible architecture.

Thus, overall, we are indeed much better off constructing CSHA256 from scratch. Of

course, this is not surprising, because a SHA-256 computation is almost a “circuit compu-

tation”: it does not make use of complex program flow, accesses to memory, and so on.

Thus, relying on machinery developed to support much richer classes of programs does

not pay off.
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2.4 Shared algorithmic core in libsnark

2.4.1 Finite field arithmetic

Cryptographic encodings in libsnark are based on pairing-friendly elliptic curves over

finite fields. Consequently, essentially all cryptographic work performed by the library

relies on fast finite field arithmetic. Moreover, the largest non-cryptographic work done

by the zk-SNARK prover involves polynomial interpolation and evaluation, again over

finite fields, and, in fact, operations that do not translate to primitive finite-field operations

contributes negligibly to the runtimes of zk-SNARK generator, prover, and verifier.

Typical high performance elliptic curve implementations target curves over fields Fq,

where q is specifically chosen to either have low Hamming weight or be close to power of

two; this choice is made so that the finite field multiplication could benefit from efficient

modular reduction algorithms that only work for primes of this structure. Unfortunately,

these optimizations cannot be applied to the zk-SNARK setting: to enable fast polynomial

interpolation and evaluation, we chose our curves in such a way that r, the order of the

curve, has property that r − 1 is divisible by a large power of two. That way, Fr has

necessary 2k-th roots of unity, and one can apply particularly efficient radix-2 FFTs.

Therefore, to speed up the finite field multiplication, libsnark uses the Montgomery

representation [Mon85] and the Coarsely Integrated Operand Scanning (CIOS) method

[KAK96] for simultaneous multiplication with modular reduction. The finite field routines

in libsnark are written in optimized assembly, but the library also includes generic C++

implementations of the field arithmetic, mainly for portability and auditing reasons.

2.4.2 Bilinear group arithmetic based on elliptic curves

We assume familiarity with elliptic curves; here, we only recall the basic definitions in

order to fix notation. See, e.g., [Was08, Sil09, FST10, CFA+12] for more details.

Let G1 and G2 be cyclic groups of a prime order r. We denote elements of G1, G2 via

calligraphic letters such as P ,Q. We write G1 and G2 in additive notation. Let P1 be a

generator of G1, i.e., G1 = {αP1}α∈Fr ; let P2 be a generator for G2. (We also view α as

an integer, so that αP1 is well-defined.) A pairing is an efficient map e : G1 ×G2 → GT,

where GT is also a cyclic group of order r (which we write in multiplicative notation),

satisfying the following properties:

• BILINEARITY. For every nonzero elements α, β ∈ Fr, it holds that e(αP1, βP2) =
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e(P1,P2)
αβ.

• NON-DEGENERACY. e(P1,P2) is not the identity in GT.

A pairing is typically instantiated via a pairing-friendly elliptic curve. Concretely, suppose

that one uses a curve E defined over Fq, with embedding degree k with respect to r, to

instantiate the pairing. Then GT is set to µr, the subgroup of r-th roots of unity in F∗qk .

The instantiation of G1 and G2 depends on the choice of e; typically, G1 is instantiated

as an order-r subgroup of E(Fq), while, for efficiency reasons [BKLS02, BLS04], G2 as

an order-r subgroup of E′(Fqk/d) where E′ is a d-th twist of E. Finally, the pairing e is

typically a two-stage function e(P ,Q) := FE(ML(P ,Q)), where ML : G1 ×G2 → Fk
q is

known as Miller loop, and FE : Fk
q → Fk

q is known as final exponentiation and maps α to

FE(α) := α(q
k−1)/r.

When only making “black-box” use of a pairing, the typical backend SNARK verifier

must evaluate 12 pairings, amounting to 12 Miller loops plus 12 final exponentiations. The

straightforward approach is to compute these using a generic high-performance pairing

library. The implementations in libsnark proceed differently: we obtain high-performance

implementations of sub-components of a pairing, and then tailor their use specifically to

V’s protocol. Namely, first, we first obtain implementations of a Miller loop and final

exponentiation.

The SNARK verifier implementations in libsnark leverage the fact that a product

of pairings can be evaluated faster than evaluating each pairing separately and then

multiplying the results [Sol03, Sco05, GS06, Sco07]. Concretely, in a product of m pairings,

the Miller loop iterations for evaluating each factor can be carried out in “lock-step” so to

share a single Miller accumulator variable, using one Fqk squaring per loop instead of m. In

a similar vein, one can perform a single final exponentiation on the product of the outputs

of the m Miller loops, instead of m final exponentiations and then multiplying the results.

In fact, since the output of the pairing can be inverted for free (as the element is unitary

so that inverting equals conjugating [SB04]), the idea of “sharing” final exponentiations

extends to a ratio of pairing products. Concretely, for [PGHR13] verifier we only need to

perform 5, instead of 12, final exponentiations.

2.4.3 Fixed and variable base multiexponentiation

Variable-base multiexponentiation. The SNARK prover P faces several large instances

of a multi-exponentiation problem, a well-studied computational problem in applied cryp-
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tography [Ber02]. The problem is as follows: given group elements g1, . . . , gm ∈ G (here,

G = G1 or G = G2) and 256-bit integers a1, . . . , am, compute ∏m
i=1 gai

i . In order to reduce

the number of group operations required to compute this product, we libsnark imple-

ments two multi-exponentiation algorithm [BC89] and [BDLO12], with different trade-offs.

Compared to the naive approach of “exponentiate and then multiply”, this save a multi-

plicative factor of between 25 (for [BC89]) and 35 (for [BDLO12]) already for m = 106 (and

the savings increase with m).

Fixed-base multiexponentiation. The SNARK generator G is instead faced with several

large instances of the following exponentiation problem: given a group element g ∈ G and

256-bit integers a1, . . . , am, compute the tuple (ga1 , . . . , gam). libsnark reduce the number

of required group operations by using the standard technique of pre-computing a table of

powers of g, and then reusing these values in each subsequent exponentiation. For 256-bit

exponents, this saves a multiplicative factor of 23 in the number of group operations (over

the naive approach of performing a “fresh” exponentiation for each term). Precomputing

more powers of g provides even greater savings, at the expense of more space usage.

2.4.4 Routing network algorithms

For fast RAM reductions libsnark implements two routing networks: a Beneš networks,

and an arbitrary-size Waksman networks [BÉ02]. The latter requires N(log N− 0.91) switches

to route N packets, instead of 2dlog Ne(dlog Ne − 0.5) for the former. Besides being closer

to the information-theoretic lower bound of N(log N − 1.443), such networks eliminate

costly rounding effects in [BCG+13a], where the size of the network is doubled if N is just

above a power of 2 (since the height of a Beneš network is 2dlog Ne). That said, Beneš

are conceptually much simpler, which helps with parallel routing implementations (see

Section 2.5).

2.5 Impact of libsnark and the future of the library

Future optimizations. Essentially all the computations required by the proof system

backend’s generator, prover, and verifier can be parallelized. In particular, routing on

Beneš networks, sorting, polynomial interpolation/evaluation, multi-exponentiation, and

others — all of these are highly-parallelizable (i.e., have polylogarithmic-depth circuits).

Parallel implementations of all of these computational tasks are well-studied, and it should
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not be difficult to make libsnark leverage all available cores so to significantly reduce

latency. We currently only do so for the two “heavy hitters”: batch multiexponentiation

routines and,to a limited extent, FFTs.
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Chapter 3

Secure sampling of public parameters for

succinct zero knowledge proofs

3.1 Introduction

Non-interactive zero-knowledge proof systems require a trusted party to sample and

publish a set of public parameters; subsequently, anyone can use the public parameters

to produce and verify proofs. In this Chapter, we design, build, and evaluate a multi-

party protocol for securely sampling public parameters of a class of non-interactive zero-

knowledge proof systems. Informally, if n parties participate in the protocol and at least

one of them is honest, then (i) the protocol’s output consists of public parameters sampled

from the correct distribution; and, (ii) the protocol’s transcript leaks no information beyond

the public parameters themselves. The class of proof systems supported by our protocol

includes state-of-the-art constructions with short and easy-to-verify proofs [PGHR13,

BCTV14c, DFGK14] and, for these, achieves excellent concrete efficiency. For example, our

protocol can efficiently generate public parameters for Zerocash [BCG+14] and for the

scalable zero-knowledge proof system of [BCTV14b].

3.1.1 Motivation

In recent years individuals and enterprises have begun to migrate large quantities of

internal data to outside providers. This trend raises concerns about the integrity and confi-

dentiality of computations conducted on this data. Consider, for example, the following

simple illustrative scenario. A server owns a private database x, and a client wishes to
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learn y := F(x) for a public function F; a commitment cm to x is known publicly. For

example, x may be a database of genetic data, and F may be a machine-learning algorithm

that uses the genetic data to compute a classifier y. On the one hand, the client seeks

integrity of computation: he wants to ensure that the server reports the correct output y (e.g.,

because the classifier y will be used for critical medical decisions). On the other hand, the

server seeks confidentiality of his own input: he is willing to disclose y to the client, but

no additional information about x beyond y (e.g., because the genetic data x may contain

sensitive personal information).

Zero-knowledge proofs. Achieving the combination of the above security requirements

seems paradoxical: the client does not have the input x, and the server is not willing to

share it. Yet, cryptography offers a powerful tool that can do that: zero-knowledge proofs

[GMR89, GMW91]. The server, acting as the prover, attempts to convince the client, acting

as the verifier, that the following NP statement is true: “there is x̃ such that y = F(x̃) and x̃

is a decommitment of cm”. Indeed: (a) the proof system’s soundness property addresses

the client’s integrity concern, because it guarantees that, if the NP statement is false, the

prover cannot convince the verifier (with high probability);1 and (b) the proof system’s zero-

knowledge property addresses the server’s confidentiality concern, because it guarantees

that, if the NP statement is true, the prover can convince the verifier without leaking any

information about x (beyond what is leaked by y).

Non-interactivity. While zero-knowledge proofs can address the above simple scenario,

they also apply more broadly, including to scenarios that involve many parties who do not

trust each other or are not all simultaneously online. In such cases, it is desirable to use

non-interactive zero-knowledge proofs (NIZKs), where the proof consists of a single message

π that can be verified by anyone. For example, a non-interactive proof π can be stored for

later use, or it can be verified by multiple parties without requiring the prover to separately

interact with each one of these.

Unfortunately, NIZKs do not exist for languages outside BPP (even when soundness

is relaxed to hold only computationally) [GO94]. But, if a trusted party is available for

a one-time setup phase, then, under suitable hardness assumptions, NIZKs exist for

all languages in NP [BFM88, BDSMP91, FLS99]. During the setup phase, the trusted

party runs a probabilistic polynomial-time generator algorithm G (prescribed by the proof

system) and publishes its output pp, called the public parameters (or common reference string);

1Sometimes a property stronger than soundness is required: proof of knowledge [GMR89, BG93], which
guarantees that, whenever the verifier is convinced, not only can he deduce that a witness exists, but also
that the prover knows one such witness.
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afterwards, the trusted party is no longer needed, and anyone can use pp to produce proofs

or to verify them.

Soundness of the NIZK depends on this trusted setup: if pp is not correctly generated,

or if secret internal randomness used within G is revealed, then it may be feasible to con-

vince the verifier of false NP statements. Compromised soundness can have catastrophic

implications, because an attacker can cause significant damage without being detected.

The problem of parameter generation. If no trusted party is available, how should the

public parameters pp be generated? Without some trustworthy method to generate public

parameters, deploying practical systems that rely on NIZKs (e.g., Zerocash [BCG+14])

seems very challenging.

First of all, if the public parameters are “simple”, then generating them securely

may be easier. For instance, a notable special case is when pp is a uniformly random

binary string of a certain length (known as a common random string). In this case, several

approaches could be investigated: (i) Utilize coin-tossing protocols (ii) Look for, in Nature

or Society, a publicly-observable distribution that equals, or is close to, random: via suitable

measurements and post-processing of, e.g., data about sun spots or the stock market, it

may be possible to extract bits that are close to random (see [CPS07, CH10] for work in

this direction, and [Nat14] for a NIST prototype using quantum randomness sources).

(iii) Resort to heuristics that use deterministic yet “random-looking” bits, e.g., consider an

agreed-upon block of bits from the mathematical constant π, or the output of SHA-256 on

an agreed-upon input.

However, if G generates pp by following a complex probabilistic strategy, then the

above approaches may not apply.

Distributed parameter generation. An attractive approach to address the problem of

parameter generation is to design a multi-party protocol for securely sampling pp. That is,

the setup phase involves a set of parties running the multi-party protocol for generating

pp, and for soundness of the NIZK to hold it suffices that only a few (ideally, even just one)

of these parties are honest. Clearly, relying on such a distributed protocol is a weaker and

more realistic trust assumption than placing ultimate trust in any single party.

Several works have explored this approach for generating public parameters of various

cryptographic primitives and, more generally, one can utilize secure multi-party compu-

tation [GMW87b, BOGW88] to obtain a feasibility result. Yet, as discussed in Section 3.2,

prior work does not yield satisfactory efficiency in our setting, which we now introduce.
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3.1.2 Our focus

The problem of parameter generation has garnered recent attention due to the development

of new and powerful NIZKs that enable verifying general computation via proofs that are

succinct, i.e., short and easy to verify [Mic00]. The new proofs are known as zero-knowledge

succinct arguments of knowledge (zk-SNARKs) [GW11, BCCT12, BCI+13], and have already

found practical applications, e.g., to building privacy-preserving decentralized electronic

cash [BCG+14]. Most zk-SNARKs require an involved parameter generation, often with

complexity proportional to the size of the computation being proved; addressing this

parameter generation is the focus of our work. Concretely, we obtain efficient multi-party

protocols for securely sampling the public parameters required by zk-SNARKs, as we now

explain.

zk-SNARK constructions. There are many zk-SNARK constructions, with different prop-

erties in efficiency and supported languages. In preprocessing zk-SNARKs, the complexity of

sampling public parameters grows with the size of the computation being proved [Gro10,

Lip12, BCI+13, GGPR13, PGHR13, BCG+13a, Lip13, FLZ13, BCTV14c, Lip14, KPP+14,

ZPK14, DFGK14, WSR+15, BBFR15]; in fully-succinct zk-SNARKs, that complexity is inde-

pendent of computation size [Mic00, Val08, Mie08, DL08, BCCT12, DFH12, GLR11, BC12,

BCCT13, BCTV14b, BCC+14]; yet other constructions strike tradeoffs between these two

extremes [CTV15, CFH+15]. Working prototypes have been achieved for preprocessing

zk-SNARKs [PGHR13, BCG+13a, BCTV14c, KPP+14, ZPK14, BBFR15], fully-succinct ones

[BCTV14b], and other kinds [CTV15, CFH+15]. Several works have also explored various

applications of zk-SNARKs [CKLM13, BFR+13, DFKP13, BCG+14, FL14].

Public parameters of zk-SNARKs. Despite the aforementioned multitude of construc-

tions, Bitansky et al. [BCI+13] showed that essentially all known preprocessing zk-SNARK

constructions can be “explained” as the combination of a linear interactive proof (LIP) and

a cryptographic encoding that only supports linear homomorphisms. This yields a uni-

fied view of parameter generation across preprocessing zk-SNARKs (that are not fully

succinct). Namely, given an NP relation R, the generator G adheres to the following

computation pattern when producing public parameters for R: (i) derive from R a cer-

tain circuit C (essentially, C is the multi-output circuit that computes the LIP’s verifier’s

message); (ii) evaluate C at a random input; (iii) output the encoding of the evaluation. In

other words, public parameters of preprocessing zk-SNARKs are the encodings of random

evaluations of certain circuits.

The sampling problem. More precisely, the zk-SNARK fixes a prime r and an order-r
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group G with generator G; then, a derived circuit C is defined over the field Fr, and the

encoding of an element α in Fr is α · G (where we view α as an integer to define its group

action); when~a = (a1, . . . , an), we use~a · P as a shorthand for the vector (a1 · P , . . . , an · P).
This discussion motivates the following multi-party sampling problem:

Let r be a prime, G = 〈G〉 an order-r group, n a positive integer, and C : Fm
r → Fh

r

an Fr-arithmetic circuit. Construct an n-party protocol for securely sampling ~P :=

C(~α) · G, lying in Gh, for a random~α in Fm.

We thus seek a multi-party protocol such that, even when all but one of the n parties are

malicious, the protocol’s output is ~P sampled from the correct distribution (or at least from

one indistinguishable from it) and, moreover, the n parties, as well as any others observing

the protocol’s execution, learn nothing beyond ~P itself. We study this problem, and the

special case of generating public parameters for preprocessing zk-SNARKs.

3.1.3 Our contributions

We design, build, and evaluate a multi-party protocol for securely sampling encodings of

random evaluations of certain circuits.

The resulting system enables us, in particular, to sample the public parameters for

a class of preprocessing zk-SNARKs that includes [PGHR13, BCTV14c, DFGK14]; we

integrated our system with libsnark [SCI], a C++ zk-SNARK library, to facilitate this

application. In more detail, we present the following two main contributions.

(1) Secure sampling for a class of circuits. We design, build, and evaluate a multi-party

protocol that securely samples values of the form C(~α) · G for a random~α, provided that C

belongs to a certain circuit class CS. Roughly, CS comprises the F-arithmetic circuits for

which: (i) the output of each (addition or multiplication) gate is an output of the circuit;

(ii) the inputs of each addition gate are outputs of the circuit; (iii) the two inputs of each

multiplication gate are, respectively, a circuit output and a circuit input or an output of an

addition-free subcircuit. See Figure 3.1a on page 46 for an example of a circuit in CS.

The multi-party protocol is based on standard cryptographic assumptions, and runs

atop a synchronous network with an authenticated broadcast channel and a common

random string. The computation proceeds in rounds and, at each round, the protocol’s

schedule determines which parties act; a party acts by broadcasting a message to all others.

When n parties participate, our protocol is secure against up to n− 1 non-adaptive

corruptions. If even one of the parties is honest, and assuming the protocol reaches

40



completion, then the protocol’s output is a sample from the designated distribution and no

other information leaks.2 Each party runs in time Oλ(size(C)), where Oλ(·) hides a fixed

polynomial in the security parameter λ. The number of rounds is n · depthS(C) +O(1) and

the number of broadcast messages is O(n · depthS(C)). Here, depthS(C) denotes the S-depth

of C (introduced later), which is at most the standard circuit depth of C, but sometimes

much smaller, as is the case for the zk-SNARK application discussed below.

While the above results hold for any group G, our code implementation is specific

to duplex-pairing groups, i.e., G is a subgroup of some G1 ×G2 equipped with a pairing.

This holds in the zk-SNARK application, and enables further optimizations (for which we

additionally rely on random oracles so as to benefit from the Fiat–Shamir heuristic [FS87]).

Compared to previous results in secure multi-party computation protocols, our special-

ized construction scales up to larger number of participating parties without incurring a

high round complexity; see Section 3.2.

(2) Application to zk-SNARKs. Our protocol can securely sample public parameters of

a zk-SNARK, whenever the generator can be cast as sampling the encoding of the random

evaluation of a circuit in the class CS.

While CS is a restrictive class, we show that several preprocessing zk-SNARK construc-

tions have such a generator:

• zk-SNARKs for arithmetic relations. For any arithmetic circuit D, we obtain a circuit

C in CS such that the encoding of a random evaluation of C corresponds to public

parameters for [PGHR13, BCTV14c]’s zk-SNARK when proving D’s satisfiability. The

circuit C has size O(size(D) log size(D)) and S-depth O(1).

• zk-SNARKs for boolean relations. For any boolean circuit D, we obtain a circuit

C in CS such that the encoding of a random evaluation of C corresponds to public

parameters for [DFGK14]’s zk-SNARK when proving D’s satisfiability. The circuit C has

size O(size(D) log size(D)) and S-depth O(1).

To facilitate the application to zk-SNARKs we integrated our multi-party protocol, as well

as the aforementioned circuit transformations, with libsnark [SCI]. Along the way, we

also extended libsnark with an implementation of [DFGK14]’s zk-SNARK, augmenting

its existing implementation based on [PGHR13, BCTV14c].

2A malicious party may prevent the protocol from completing, by acting incorrectly or by delaying
prescribed broadcasts. However, the culprit can be readily identified. Such aborts necessarily bias the output
distribution but, in our case, the bias is negligible and thus inconsequential.
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We evaluated our protocol’s costs when invoked to securely sample the public parame-

ters of the zk-SNARK used in the following two concrete examples.

• Example #1: Zerocash (a decentralized anonymous payment system extending Bitcoin)

[BCG+14]. We fix D to be the arithmetic circuit used in [BCG+14]’s zk-SNARK. Then C

has size 138 467 206 and S-depth 3; in our multi-party protocol, the number of rounds

is 3n + 3 and, when counting cryptographic work on our reference system, each party

works for 14 124 s.

• Example #2: scalable ZK (incrementally-computable zero knowledge for a 32-bit RISC

architecture) [BCTV14b].

We fix D to be the arithmetic circuit used in [BCTV14b]’s zk-SNARK. Then C has size

8 027 609 and S-depth 6; in our multi-party protocol, the number of rounds is 6n + 6 and

each party works for 4 048 s. (In [BCTV14b] there are two required circuits D; here and

later we specify, for each complexity measure, the sum of the two costs.)

In both cases above, C’s S-depth is less than 10, while its standard depth exceeds many

hundreds of thousands. The fact that our sampling protocol’s round complexity is efficient

in S-depth allows for scaling to larger number of parties.

Remark 3.1.1. We stated that our multi-party protocol runs atop a synchronous network

with an authenticated broadcast channel and a common random string. In practice, one

needs to realize (or at least approximate) this model. A careful exploration of which

realizations are suitable lies outside the scope of this work, and is anyways application

dependent. We only briefly mention natural options to consider: a broadcast channel

can be viewed as an append-only public logbook and may be obtained, e.g., via Bitcoin’s

Proof-of-Work-based blockchain protocol [Nak09]; authentication may be obtained, e.g.,

via digital signatures supported by a public-key infrastructure; a common random string

may be obtained, e.g., via a public randomness source with high entropy or coin-tossing

protocols.

3.1.4 Summary of challenges and techniques

We describe at a high level the challenges that arise, as well as the techniques that we

employed to address them, for each of our two main contributions.
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Secure sampling for a class of circuits

Let r be a prime, G = 〈G〉 an order-r group, n a positive integer, and C : Fm
r → Fh

r an

Fr-arithmetic circuit. We seek an n-party protocol for sampling C(~α) · G, for a random

~α, that is secure against up to n− 1 non-adaptive corruptions. We may compromise on

functionality by restricting C to lie in a circuit class CS, provided that we gain improved

efficiency (since, ultimately, we want to implement the protocol and use it to generate

zk-SNARK public parameters).

The ideal functionality. We first need to choose the ideal functionality fn,C,G to be

realized by the multi-party protocol. A reasonable candidate is the following: on input

~σ := (~σ1, . . . ,~σn) where ~σi = (σi,1, . . . , σi,m) ∈ Fm
r is the i-th party’s input, fn,C,G first

computes αj := ∏n
i=1 σi,j for j = 1, . . . , m; then fn,C,G sets~α := (α1, . . . , αm) and computes

~P := C(~α) · G; finally, fn,C,G outputs ~P . Indeed, if at least one party honestly provides

an input consisting of random field elements, fn,C,G outputs the encoding of a random

evaluation of C.3

Difficulties with standard approaches. Realizing an ideal functionality typically (though

not always) comprises two steps: (a) express the ideal functionality as a circuit, and then

(b) invoke a known multi-party protocol to securely evaluate the circuit. In our setting

both steps pose efficiency challenges, which we now discuss.

• Expressing the ideal functionality as a circuit.

Expressing fn,C,G as a boolean is circuit is expensive, because computing C(~α) · G in-

volves “non-boolean” operations: (i) the evaluation of the Fr-arithmetic circuit C, and

(ii) h scalar multiplications over the group G. Indeed:

– The number of boolean gates for evaluating C is at least × log2 r larger than the

number of Fr-arithmetic gates for the same task, as each addition and multiplication

in Fr is expanded into a boolean subcircuit of size ≥ log2 r.

– Each of the h scalar multiplications over G similarly expands into a boolean subcircuit

of size ≥ aG · log2 r, where aG is the number of boolean gates to evaluate addition in

G.

In the applications that we consider, G is instantiated via an elliptic curve over a base

field Fq, so that aG is at least log2 q. Overall, conversion to boolean operations incurs a

3More precisely, fn,C,G also checks that none of the parties’ inputs contains a zero. Forbidding zeros biases
the output distribution, but only negligibly, since r is chosen large enough for discrete log to be hard in Z∗r .
The alternative option of additive (rather than multiplicative) shares ultimately results into a construction
with worse efficiency.
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blowup of up to five orders of magnitude in the number of gates to securely evaluate,

because log2 q, log2 r ≥ 250 (for, e.g., achieving 128 bits of security for G’s DL problem).

Expressing fn,C,G as an arithmetic circuit is also expensive, as we now explain. While the

circuit C is defined over the field Fr, the group G may not be; e.g., in our applications,

the field Fr is different from the field Fq that underlies G4 . Hence, if we express fn,C,G as

an Fr-arithmetic circuit then, while evaluating C may be efficient, scalar multiplications

over G are not. Conversely, if we express fn,C,G as an Fq-arithmetic circuit, while scalar

multiplications over G may be efficient, evaluating C is not. Either way, we again incur

the overheads associated to mismatch of field characteristic.

• Securely evaluating the circuit.

Known multi-party protocols that are secure against malicious majorities either (i) have

round complexity that scales linearly with circuit depth, or (ii) rely on heavy crypto-

graphic tools that are unlikely to yield efficient implementations in the near future.

The applications that we consider involve circuits C with depths exceeding hundreds

of thousands, so that these prior works do not seem applicable. (See Section 3.2 for

discussion and citations.)

Our approach. We take an approach that (a) avoids the overheads due to mismatch in field

characteristic, and (b) has low round complexity without relying on heavy cryptographic

tools.

We observe (see Section 3.1.4 below) that for several zk-SNARK constructions the

“generator circuit” C can, with some effort, be written so as to belong to the circuit class

CS (informally introduced in Section 3.1.3). We then restrict our attention to realizing the

ideal functionality fn,C,G for C ∈ CS.

For circuits in CS, we design a multi-party protocol in which parties do not follow the

two-step recipe of expressing fn,C,G as a circuit and securely evaluating that circuit (which

would likely involve first securely evaluating ~β := C(~α) and then securely evaluating

its encoding ~β · G). Instead, via a suitable use of commitment schemes and NIZKs (in

the common random string model), the parties jointly evaluate each gate of C, directly in

encoded form, eventually producing the final output C(~α) · G.

At a high level, the construction is as follows. First, as in traditional multi-party

protocols, each party commits to his own shares of the input. Then, for each gate of C:

4In particular, our applications rely on pairing friendly-curves, where the case Fr = Fq would make the
discrete logarithm problem easy [MOV91].
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(i) if the gate is an addition, each party simultaneously performs the addition locally, by

adding the gate’s encoded inputs to obtain the gate’s encoded output; (ii) if the gate is a

multiplication, each party, in sequence, contributes, and proves in zero knowledge correct

contribution of, his input shares in producing the encoded output. In both cases, we rely

on the fact that the encoding α 7→ α · G is linearly homomorphic and that C belongs to

CS. Roughly, these two properties ensure that when a party needs to homomorphically

evaluate an addition, its encoded inputs have already been broadcast; similarly, when a

party needs to contribute his input shares to one input of a multiplication, the encoding of

the other input has already been broadcast.

A naive realization of the above strategy yields an enormous number of broadcast

rounds: n times C’s depth. In contrast, we show that, via a careful scheduling of when

each party processes a multiplication gate, we can reduce the number of broadcast rounds

to only n times C’s S-depth, where S-depth is a much milder notion of depth (defined

later). In the zk-SNARK application that we consider, depth(C) grows with size(C) while

depthS(C) is a small constant.

In Section 3.1.5 we sketch in more detail our construction. Our code implementation is

specialized to when G is a duplex-pairing group, in which case the NIZKs used by parties

can be implemented very efficiently via Sigma protocols and the Fiat–Shamir heuristic

[FS87].

Application to zk-SNARKs

We wish to apply our multi-party protocol to generating public parameters for two

zk-SNARK constructions: that of [PGHR13, BCTV14c] and of [DFGK14]. This requires a

procedure for transforming the NP relation R given as input to generator (represented

as an instance of circuit satisfiability), into a corresponding circuit C ∈ CS such that the

ideal functionality fn,C,G equals (or is indistinguishable from) the distribution of public

parameters output by the generator.

Difficulty with Lagrange polynomials. Constructing the circuit C, subject to the restric-

tions of CS (needed for applying our multi-party protocol), is not straightforward for either

of the aforementioned zk-SNARKs. The main technical issue that arises, in both cases,

is how to construct an efficient subcircuit of C that evaluates all Lagrange interpolating

polynomials at a given input τ ∈ Fr.

More precisely, given a subset W = {δ1, . . . , δd} of Fr (potentially enjoying special

properties), we seek a circuit CW ∈ CS of small size and S-depth such that CW(τ) =
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(a) Example of a circuit in CS.
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(b) Example of a circuit in CE.

Figure 3.1: Examples of a circuit in CS and one in CE. In the latter case, the inputs of the
circuit are partitioned into slots. In both cases, the red contour lines denote (traditional)
circuit depth, while blue contour lines denote S-depth and E-depth respectively. (See
Section 3.1.5 for more details.)

(L1(τ), . . . , Ld(τ)), where Li(z) denotes the univariate polynomial ∏d
j=1(z− δj)/ ∏j 6=i(δj−

δi).

The simplest setting for interpolation problems typically occurs when d is a power of 2

and W is a subgroup of F∗r , and thus we focus on it. One can show that, in this case, there

is a linear-time algorithm for evaluating all Lagrange polynomials. Unfortunately, this

algorithm crucially makes use of division gates, which are not allowed for circuits in CS

(since our protocol does not handle them). Falling back on naive approaches to evaluate

all Lagrange polynomials does yield a circuit in CS, but of quadratic size and linear depth

and S-depth.

Our approach. We provide two constructions of a Lagrange evaluation circuit CW , with

different tradeoffs.

• The first construction has size O(d log d) and S-depth O(1).

• The second construction has size O(d) and S-depth O(log d).

In both cases, we rely on a suitable FFT-like subcircuits that lie in CS.

3.1.5 Construction summary

We summarize our construction of an n-party protocol realizing the ideal functionality

fn,C,G against up to n− 1 non-adaptive corruptions. We only consider the case when the

circuit C : Fm → Fh lies in the class CS, which consists of circuits for which: (i) the output
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of each (addition or multiplication) gate is an output of the circuit; (ii) the inputs of each

addition gate are outputs of the circuit; (iii) the two inputs of each multiplication gate are,

respectively, a circuit output and acircuitinputoranoutputo f anaddition − f reesubcircuit.

See Figure 3.1a for an example of a circuit in CS.

We first introduce some ideas for the artificial special case of a single party running

the protocol, and then explain how to extend these ideas to multiple parties. Below,

LC,G denotes the language {~Q ∈ Gh | ∃~α ∈ Fm s.t. ~Q = C(~α) · G}, and DC,G denotes the

distribution over Gh obtained by drawing~α ∈ Fm at random and then outputting C(~α) · G.

A special case. Suppose that a single party selects~α ∈ Fm (not necessarily at random),

computes the output ~P := C(~α) · G ∈ Gh, and wishes to broadcast a transcript tr that

enables anyone to establish correctness of ~P while not learning any information beyond
~P itself; we assume that tr contains the claimed output, and denote it by tr.out. More

precisely (but still informally), we seek a prover Π, verifier V, and simulator S that satisfy:

(i) syntactical correctness: for all efficient Π∗, Pr[V(tr) = 1 and tr.out 6∈ LC,G | tr← Π∗]

is negligible; and

(ii) zero knowledge: for any ~Q ∈ Gh, S(~Q) is indistinguishable from {tr | tr← Π} condi-

tioned on tr.out = ~Q.

At this stage we do not yet pose any requirements on the distribution of the output ~P
claimed in the transcript tr.

One approach to achieve the above is for the single party to broadcast tr := (~P , π)

where π is a NIZK proof (in the common random string model) for the NP statement

“~P ∈ LC,G”, and let V and S be the NIZK verifier and simulator.

While using a NIZK suffices for the case of a single party, we make here several

observations that build intuition for the case of multiple parties. First, in many NIZK

constructions the proof π is obtained as the concatenation of several sub-proofs attesting

to corresponding sub-statements such that, if all of these hold, then the original statement

is true. A common paradigm is for the NIZK prover to produce a commitment for each

wire in the circuit, and then, for each gate g in C, produce a zero-knowledge sub-proof πg

attesting that the decommitments for the gate’s inputs and output are consistent with g.

We observe that, if C is in CS, then the NP statement “~P ∈ LC,G” factors into a collection of

sub-statements of a particular form. Essentially, for each gate g taken in topological order:

• If g is an addition gate, anyone can establish correct evaluation of g by looking up in ~P
the gate’s encoded inputs and encoded output (they all appear somewhere in ~P since all

of these are circuit outputs), and check the gate’s linear relation by using the encoding’s
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linear homomorphism. So we can set the sub-proof πg := ⊥.

• If g is a multiplication gate, then we know that the encoding P of the left input of g and

the encoding R of g’s output both appear somewhere in ~P and, if γ ∈ F denotes the

right input of g, the single party can generate a NIZK sub-proof πg for the sub-statement

“there is γ, consistent with the circuit inputs, such thatR = γ · P”.

In sum, while we do not know how to enable multiple parties to jointly produce the

necessary sub-proofs in the general case, we show that this can be done if C is in CS, as we

discuss next.

Extending to multiple parties. Suppose that there are n participating parties (with n > 1),

and denote by tr the transcript of all broadcast messages. At a high level, now that there

are multiple parties, we seek an n-party protocol Π, verifier V and simulator S that satisfy

variants of the above properties:

(i) distributional correctness: if at least one party is honest, {tr.out | tr← Π} conditioned

on V(tr) = 1 is indistinguishable from DC,G ; and

(ii) zero knowledge: if at least one party is honest, for any ~Q ∈ Gh, S(~Q) is indistinguish-

able from {tr | tr← Π} conditioned on tr.out = ~Q.

Unlike before, now we are requiring the output ~P , claimed in the transcript tr, to be

distributed in a certain way.

First note that we can’t set tr := (pp, π) where π is a NIZK proof for the NP statement

“~P ∈ LC,G”, because there is no single party that knows a witness~α ∈ Fm for it. As specified

by the ideal functionality fn,C,G that we wish to realize (see Section 3.1.4), each party only

holds a multiplicative share of every coordinate of~α: party i holds~σi = (σi,1, . . . , σi,m) ∈ Fm
r

and the j-th coordinate of~α equals ∏n
i=1 σi,j.

Yet, the statement “~P ∈ LC,G” still factors into a collection of sub-statements that, if

C ∈ CS, are of a particular form. We leverage this fact to design our multi-party protocol.

Roughly, for each gate g taken in topological order:

• If g is an addition, similarly to before, we can set the sub-proof πg to be empty, because

anyone can verify the linear relation by looking up in ~P the encodings of g’s inputs and

output.

• If g is a multiplication, the sub-statement “there is γ such thatR = γ · Q” (mentioned

above) further factors into n sub-statements, the i-th one corresponding to contributing

the i-th share of γ by party i. Thus, the sub-proof πg can be jointly computed by

concatenating n sub-sub-proofs, the i-th one computed by party i.

Towards a full construction. The construction sketch given so far hides many details,
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both in terms of defining security goals, formulating the construction, and proving it

secure. We briefly describe how we formalize our ideas.

First, instead of targeting the above ad-hoc security properties (introduced for intu-

ition), we formalize our goal as realizing a certain ideal functionality fn,C,G . Our security

definitions are thus the standard ones for secure multi-party computation protocols, with

the exception that we find it convenient to make explicit the notion of a (transcript) verifier

V. See Section 3.4 for more details.

Next, we split our construction in two parts: (1) we reduce the problem of sampling

the encoding of a random evaluation of a given circuit C in the class CS to the problem

of jointly evaluating a related circuit C̃ in another class CE; (2) we construct a multi-party

protocol for securely evaluating any circuit in CE (including C̃). More details follow.

The circuit class CE differs from CS in two ways. First, the inputs of a circuit C̃ ∈ CE are

partitioned into slots; we write C̃ : Fm1 × · · · ×Fmn → Fh to express that the first m1 inputs

are in the first slot, the next m2 in the second, and so on; the integers m1, . . . , mn are part of

C̃’s description. Second, the restriction on the possible inputs of multiplication gates is

relaxed (i) the output of each addition gate is an output of the circuit; (ii) the inputs of each

addition gate are outputs of the circuit; (iii) the two inputs of each multiplication gate are,

respectively, a circuit output and either a circuit input, or a circuit output computable from

inputs from a single slot; and (iv) if output of a multiplication gate g is a circuit output,

then its left input must be a circuit output and the right input is either a circuit input, or

it must be the case that g computes w1 · w2
w3

for three circuit output wires w1, w2, w3. The

last case describes the scenario where a multiplication gate references wires that are not

circuit outputs, yet the correctness of this gate can be verified by a ratio test. Figure 3.1b is

an example of a circuit in CE.

The transformation from C ∈ CS to C̃ ∈ CE is as follows. The m inputs of C are

multiplicatively shared among n parties to obtain n ·m inputs for C̃; slot i of C̃ contains the

m shares of party i. Each multiplication gate in C is mapped to O(n) multiplication gates

in C̃ tasked with assembling all the relevant shares; each addition gate in C is mapped

to a corresponding addition gate in C̃. A crucial feature of the transformation is depth

efficiency (see below).

The multi-party protocol for circuits in CE is a generalization of the one that we de-

scribed above for a single party. Essentially, the class CE ensures that at each multiplication

gate there is one party that knows the “local” witness for producing a NIZK proof of

correct evaluation of the gate. The protocol proceeds in rounds, and at each round every
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party proves correct evaluation of any gate ready to be processed, and so on until no more

gates need to be processed.

Finally, a subtle technical detail is that our multi-party protocol works for evaluating

circuits in CE on most but not all inputs. Some inputs are pathological for our construction,

so we rule them out; fortunately these arise with only negligible probability, so they do not

bias the overall sampling protocol by more than a negligible amount. More precisely, we

assume that the circuit wires will never carry zero values; this suffice for our applications

and is easy to ensure in our construction.

Depth matters. The round complexity of securely evaluating C̃ ∈ CE is depthE(C̃) +O(1),

where depthE(C̃) is the E-depth and (roughly) corresponds to the maximum number of

gate-ownership alternations along any input-to-output path; ownership refers to which

party provides the input share to a gate. (See Figure 3.1b for a comparison of depth and

E-depth for an example in CE.) Intuitively, while going down a path in the circuit, every

change in gate ownership means that a party needs to wait on another one to process the

previous gate, thereby costing an extra broadcast round.

Therefore, it is crucial that the transformation from C to C̃ is efficient in terms of E-depth

of C̃. By carefully combining the subcircuits in C̃, we ensure that depthE(C̃) = n · depthS(C),

where depthS(C) is the S-depth of C; S-depth denotes the maximum number of alternations

between addition and multiplication gates along any input-to-output path. (See Figure 3.1a

for a comparison of depth and S-depth for an example in CS.)

3.2 Prior work

Prior work has not specifically studied the problem of parameter generation for zk-SNARKs,

but has studied this several other cryptographic goals, as mentioned below. We also

discuss other tools relevant to our security goals: secure multi-party computation and

zero-knowledge proofs.

Addressing setup assumptions. Cryptographic constructions are sometimes proved

secure contingent on the fact that certain setup assumptions hold (and some setup assumption

is at times necessary). Prior work has studied the problem of relaxing setup assumptions

for various cryptographic goals, including NIZKs and also, more generally, universally-

composable (UC) security [Can01].

Canetti et al. [CPS07] study UC security in a model where the common reference string

has been sampled by an adversary with some restrictions (e.g., the string is has enough
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min entropy and the sampling algorithm is efficient and known to the adversary). Groth

and Ostrovsky [GO07] study NIZKs and UC security in a model where there are multiple

common reference strings of which a majority are generated by honest parties. Goyal and

Katz [GK08] study UC security in a model where there is a single common reference string

with the twist that, if corrupted, security still holds provided not too many parties are also

corrupted. Garg et al. [GGJS11] study UC security in a model where there are multiple

setups at once and each party has a belief about which ones of these setups is trustworthy;

this model captures as special cases the models of [GO07, GK08]. Katz et al. [KKZZ14]

also study UC security in a related model where there are multiple setups (of which some

fraction are corrupted).

Clark and Hengartner [CH10] study statistical properties of the stock market, in order

to understand to what extent it can be used to obtain common random strings in practice

(e.g., to be used for a NIZK).

Various works have also studied distributed generation of the discrete logarithm of

a published value or of an RSA modulus [Ped92, CS04, GJKR07, KHG12, HMRT12]; such

protocols are often useful in threshold cryptography.

Secure multi-party computation. The area of secure multi-party computation has seen

rapid recent progress, both in terms of theoretical results and concrete implementations.

Yet, the existing generic implementations do not support, or inefficiently support, the set-

ting that we consider: many parties, dishonest majority (against non-adaptive corruptions),

and evaluation of a circuit with large (standard) circuit depth.

For example, many implementations consider the case of two parties [MNPS04], where

they achieve outstanding efficiency [sS13, BHKR13], and can process billions of boolean

gates while spending only tens of CPU cycles on each. Most of the approaches in this

setting are based on Yao’s seminal work on garbled circuits [Yao86, LP09].

Some implementations consider the case of arbitrary number of parties, but they suffer

from other limitations. For example, [BDNP08] consider adversaries that are honest but

curious (but not malicious). Other protocols [BOGW88, DGKN09] consider malicious ad-

versaries but require an honest majority. There are known constant-round MPC protocols

for a fully-malicious, dishonest majority [KOS03, Pas04], but these require expensive ZK

proofs and have not been implemented.

When requiring security against dishonest majorities (with at least one honest party),

implementations have a round complexity that depends linearly on the depth of the

circuit being computed [Orl11, DKL+13, DLT14, BDOZ11, DPSZ12]. The applications
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that we consider in this paper involve circuit depths that exceed hundreds of thousands,

resulting in large round complexities; such round complexities are at best very expensive

when considering network latencies on the Internet and at worst prohibitive if one of

the participating parties uses an air gap as a precaution. While theoretical results do

achieve sublinear round complexity [AJL+12, GGHR14], they rely on “heavy artillery”

such as fully-homomorphic encryption and program obfuscation, unlikely to yield efficient

implementations in the near future.

Finally, Baum et al. [BDO14] study the notion of auditable secure multi-party computa-

tion, in which anyone can use a verifier algorithm to ensure that the output is computed

correctly even when all parties are corrupted. The multi-party protocol in this paper is

auditable in this sense, but in our setting this property is not useful because we also care

about the distribution of the output, for which we can say nothing when all parties are

corrupted.

Zero-knowledge proofs. An idea to address the problem of generating public parameters

is to task a single party to provide a zero-knowledge proof that the public parameters

are an output of the generator algorithm. Yet, everyone else must still trust this party to

(i) provide suitable randomness to the generator (so that the output is not only syntactically

but also distributionally correct) (ii) not abuse or leak this randomness. Even if there were

zero-knowledge proofs that are efficient for the NP statements that one would consider

in our setting (e.g., [RMMY12, PRST08, MR14] could be good candidates), this use of

zero-knowledge proofs does not address one of our main goals, which is distributing

trust among multiple parties. That said, our construction can be intuitively viewed as a

zero-knowledge proof that can be jointly computed by n parties of which only one must

be honest; see Section 3.1.5.

3.3 Definitions

We give the definitions needed for technical discussions.

Remark 3.3.1. Some cryptographic primitives that we use (e.g., commitments and NIZKs)

leverage only “simple” public parameters: pp is a random binary string of a certain length.

In this case, pp is known as a common random string, and we denote it by crs. A common

random string stands in contrast to more general forms of public parameters (which are a

common reference string), leveraged by zk-SNARKs and whose generation is the problem
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that we set out to solve in the first place. It is thus not circular to primitives that require

common random strings as part of our construction. (See Section 3.1.)

3.3.1 Basic notation

We denote by λ the security parameter; f = Oλ(g) means that there exists c > 0 such that

f = O(λcg). The power set of a set S is denoted 2S. Vectors are denoted by arrow-equipped

letters (e.g.,~a); their entries carry an index but not the arrow (e.g., a1, a2). Concatenation of

vectors (and scalars) is denoted by the operator ◦.

Implicit inputs. To simplify notation, the input 1λ is implicit to all cryptographic algo-

rithms. Similarly, we do not make explicit adversaries’ auxiliary inputs.

Distributions. We write {y | x1 ← D1 ; x2 ← D2 ; . . . }E to denote the distribution over

y obtained by conditioning on the event E and sampling x1 from D1, x2 from D2, and

so on, and then computing y := y(x1, x2, . . . ). Given two distributions D and D′, we

write D negl
= D′ to denote that the statistical distance between D and D′ is negligible

in the security parameter λ. A distribution D is efficiently sampleable if there exists a

probabilistic polynomial-time algorithm whose output follows the distribution D.

Groups. We denote by G a group, and consider only groups that are cyclic and have a

prime order r. Group elements are denoted with calligraphic letters (such as P ,Q). We

write G = 〈G〉 to denote that the element G generates G, and use additive notation for

group arithmetic. Hence, P +Q denotes addition of the two elements P and Q; a · P
denotes scalar multiplication of P by the scalar a ∈ Z; and O := 0 · P denotes the identity

element. Since r · P = O, we can equivalently think of a scalar a as belonging to the field

of size r. Given a vector of scalars ~a = (a1, . . . , an), we use ~a · P as a shorthand for the

vector (a1 · P , . . . , an · P).

Fields. We denote by F a field, and by Fn the field of size n; we consider only fields of

prime order. Field elements are denoted with Greek letters (such as α, β).

3.3.2 Commitments

A commitment scheme is a pair COMM = (COMM.G, COMM.V) with the following syntax.

• COMM.G(crs, x)→ (cm, cr): On input common random string crs and input data x, the

commitment generator COMM.G probabilistically samples a commitment cm of x and

corresponding commitment randomness cr.
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• COMM.V(crs, x, cm, cr)→ b: On input common random string crs, input data x, com-

mitment cm, and commitment randomness cr, the commitment verifier COMM.V outputs

b = 1 if cm is a commitment of x with randomness cr.

The common random string crs is COMM’s public parameters, and consists of Oλ(1)

random bits.

The scheme COMM satisfies the standard completeness, (computational) binding, and

(statistical) hiding properties. We do not assume that a commitment cm hides |x| (i.e., we

do not assume that COMM produces succinct commitments).

3.3.3 Non-interactive zero-knowledge proofs of knowledge

A non-interactive zero-knowledge proof of knowledge (NIZK) for an NP relation R in the

common random string model is a tuple NIZKR = (NIZKR.P, NIZKR.V, NIZKR.E, NIZKR.S)

with the following syntax.

• NIZKR.P(crs, x,w)→ π: On input common random string crs, instance x, and witness

w, the prover NIZKR.P outputs a non-interactive proof π for the statement “there is w

such that (x,w) ∈ R”.

• NIZKR.V(crs, x, π)→ b: On input common random string crs, instance x, and proof π,

the verifier NIZKR.V outputs b = 1 if π is a convincing proof for the statement “there is

w such that (x,w) ∈ R”.

The common random string crs is NIZKR’s public parameters, and consists of Oλ(1) ran-

dom bits. The remaining two components are each pairs of algorithms, as follows.

• NIZKR.E1 → (crsext, trapext): The extractor’s generator NIZKR.E1 samples a string crsext

(indistinguishable from crs) and corresponding trapdoor trapext.

• NIZKR.E2(crsext, trapext, x, π)→ w: On input crsext, trapext, instance x, and proof π, the

extractor NIZKR.E2 outputs a witness w for the instance x.

• NIZKR.S1 → (crssim, trapsim): The simulator’s generator NIZKR.S1 samples a string crssim

(indistinguishable from crs) and corresponding trapdoor trapsim.

• NIZKR.S2(crssim, trapsim, x)→ π: On input crssim, trapsim, and instance x (such that ∃w :

(x,w) ∈ R), the simulator NIZKR.S2 outputs a proof π (indistinguishable from an honest

one).

The scheme NIZKR satisfies the standard completeness, (computational, adaptive) proof-

of-knowledge, and (statistical, adaptive, multi-theorem) zero-knowledge properties. See,

e.g., [FLS99, GOS06b, GOS06a] for formal definitions.
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3.3.4 Arithmetic circuits

We consider arithmetic, rather than boolean, circuits. Given a field F, an F-arithmetic circuit

C takes as input elements in F, and its gates output elements in F. We write C : Fm → Fh

if C takes m inputs and produces h outputs.

Wires, inputs, gates, and size. We denote by wires(C) and gates(C) the wires and gates

of C; also, we denote by inputs(C) and outputs(C) the subsets of wires(C) consisting of C’s

input and output wires. We denote by #wires(C), #gates(C),#inputs(C), and #outputs(C)

the cardinalities of wires(C), gates(C), inputs(C), and outputs(C) respectively. The size of C

is size(C) := #inputs(C) + #gates(C).

Gate types. A gate g of C is of one of three types:

• a constant gate that outputs a constant α with α 6= 0;

• an addition gate that computes a linear combination ∑d
j=1 αjwj with d ≥ 2; or

• a multiplication gate that computes a product αwLwR with α 6= 0.

We define type(g) to be const for constant gates, add for addition gates, and mul for multi-

plication gates. If g is an addition gate, inputs(g) := {w1, . . . , wd} are the input wires and

coeffs(g) := (α1, . . . , αd) are the coefficients. If g is a multiplication gate, L-input(g) := wL

is the left input wire, R-input(g) := wR is the right input wire, and coeffs(gmul) := (α) is the

coefficient; also, inputs(g) := {L-input(gmul), R-input(gmul)} are the two input wires. (By

this use of sub/super-scripts, the r-th input of an addition gate can be easily distinguished

from the right input of a multiplication gate.) For the three gate types, output(g) := w

is the output wire; also, gw is the gate for which w = output(gw). As usual, the depen-

dency graph induced by C’s gates is acyclic. Moreover, each gate g of circuit C computes

a polynomial in inputs(C); we use wire-poly(w) to denote the polynomial computed by

gw. We also use #const-gates(C), #add-gates(C), and #mul-gates(C) to denote the num-

ber of constant, addition, and multiplication gates (and, of course, it then holds that

#gates(C) = #const-gates(C) + #add-gates(C) + #mul-gates(C)).

Valid inputs. Given a circuit C : Fm → Fh, at times we consider only a subset of all of its

possible inputs in Fm; these are the inputs that we consider to be “valid”. We think of this

set as part of the description of C and denote it by valid-inputs(C).

Further notions for circuits with partitioned domains. We also consider F-arithmetic

circuits C for which the m inputs of the circuits are partitioned into n disjoint slots; in such

a case, we write C : Fm1 × · · · ×Fmn → Fh to express that the first m1 inputs belong to the

first slot, the next m2 to the second, and so on; the integers m1, . . . , mn are then also part of
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C’s description. In our protocols, the i-th slot will carry the inputs of the i-th participant

of the protocol. For i = 1, . . . , n: we denote by inputs(C, i) the input wires that belong to

the i-th slot, and by gates(C, i) the gates that take as input an input wire in inputs(C, i);

the notations #inputs(C, i) and #gates(C, i) denote the cardinalities of these sets; and we

define size(C, i) := #inputs(C, i) + #gates(C, i). For every w ∈ inputs(C), slot(C, w) is w’s

slot number, i.e., the index i such that w ∈ inputs(C, i).

Finally, to assist in stating the definition of E-depth (see below), we introduce the

dependency set ds(w) of a wire w; roughly, it denotes the subset of {1, . . . , n} comprising the

slots that individually carry enough information (in terms of inputs) to compute the value

of w in the most efficient evaluation schedule.

The formal definition of ds(w) is quite technical, and is given below:

ds(w) :=

{slot(C,w)} if w ∈ inputs(C)

{1, . . . , n} if w 6∈ inputs(C), type(gw) = const

{1, . . . , n} if w 6∈ inputs(C), type(gw) = add,
⋂
w′∈inputs(gw) ds(w

′) = ∅⋂
w′∈inputs(gw) ds(w

′) if w 6∈ inputs(C), type(gw) = add,
⋂
w′∈inputs(gw) ds(w

′) 6= ∅

ds(L-input(gw)) if w 6∈ inputs(C), type(gw) = mul and R-input(gw) does not depend on any inputs

{i} if w 6∈ inputs(C), type(gw) = mul and R-input(gw) only depends on inputs from slot i

.

Two classes of circuits. Below we define the two circuit classes CS and CE.

• CS is the class of F-arithmetic circuits C : Fm → Fh for which every gate g in gates(C) is

such that:

(i) output(g) ∈ outputs(C);

(ii) if type(g) = add, then inputs(g) ∩ inputs(C) = ∅; and

(iii) if type(g) = mul, then L-input(g) 6∈ inputs(C) and either R-input(g) ∈ inputs(C) or

R-input(g) is the output of an addition-free subcircuit.

• CE is the class of F-arithmetic circuits C : Fm1 × · · · ×Fmn → Fh for which every gate g

in gates(C) is such that:

(i) if type(g) = add, then inputs(g) ⊆ outputs(C) and output(g) ∈ outputs(C);

(ii) if type(g) = mul, then L-input(g) 6∈ inputs(C) and for every w, w′ ∈ inputs(C), if

R-input(g) depends on w and w′ then slot(C, w) = slot(C, w′); and

(iii) if type(g) = mul and output(g) ∈ outputs(C), then L-input(g) ∈ outputs(C) and

either R-input(g) ∈ inputs(C) or there exist three wires w1, w2, w3 ∈ outputs(C)

such that wire-poly(output(g)) = wire-poly(w1) · wire-poly(w2)
wire-poly(w3)

. Moreover, there exists

a slot i such that all input dependencies of R-input(g), w2 and w3 belong to the slot
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i.

The last case captures non-output gates, where the correct computation can be checked

via a ratio test for two output wires w2 and w3. We introduce a special notation for ref-

erencing the existentially quantified w1, w2 and w3, letting mul-wit1(C, g), mul-wit2(C, g)

and mul-wit3(C, g) denote a (canonical) choice of w1, w2 and w3, respectively; these are

part of the circuit description. When constructing a circuit C in CE we will specify a con-

crete choice for mul-wit1(C, g), mul-wit2(C, g) and mul-wit3(C, g), to prove its existence,

but we stress that our protocols work for any choice of w1, w2 and w3 that satisfies the

restrictions above.

In the third case above, a wire mul-wit3(C, g) appears as a denominator, so we need to

exclude inputs to the circuit that cause it to be zero. For circuits C in the class CE we set

valid-inputs(C) to be the subset of Fm1 × · · · ×Fmn such that for every multiplication-by-

output gate g and every~α ∈ valid-inputs(C) we have wire-poly(mul-wit3(C, g))(~α) 6= 0.

Finally, we stipulate that for every circuit C in the class CE, the directed graph formed

by its gates (as vertices), their output wires (as edges) and additional edges connecting

mul-wit1(C, g), mul-wit2(C, g), and mul-wit3(C, g) to g, must be acyclic.

Notions of depth. For circuits in CS and CE, we use alternative notions of depth, called

S-depth and E-depth; both S-depth and E-depth are bounded from above by (traditional)

circuit depth, but are sometimes much less than it. (For example, the circuit computing

w→ (1, w, w2, . . . , w100) has depth 100, while it has S-depth and E-depth equal to 1.)

• The S-depth of C in CS is depthS(C) := maxw∈outputs(C) depthS(w), where depthS(w)

measures the greatest number of alternations along a path from inputs between (a) mul-

tiplication gates for which the right input wire depends on an input wire; and (b) all

other gates. A formal definition follows.

When w ∈ inputs(C), we define depthS(w) := 0, and when w 6∈ inputs(C) we set

depthS(w) :=

0 if type(gw) = const

max {depthS(w′)}w′∈inputs(gw) if type(gw) = add

depthS(L-input(gw)) if type(gw) = mul and R-input(gw) does not depend on any inputs

depthS(L-input(gw)) + bSL-input(gw)
if type(gw) = mul and R-input(gw) depends on at least one input

.

Above bSw ∈ {0, 1} is set to be 1 for w ∈ inputs(C), and is defined recursively for

w 6∈ inputs(C):
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bSw :=



1 if type(gw) = const

1 if type(gw) = add

bSL-input(gw)
if type(gw) = mul and R-input(gw) does not depend on any inputs

0 if type(gw) = mul and R-input(gw) depends on at least one input

.

Remark 3.3.2. When w ∈ inputs(C), the values of depthS(w) and bSw can be defined

arbitrarily, as they are not referenced in any calculations. For symmetry with depthE(w)

we define both values to equal 1.

• The E-depth of C in CE is depthE(C) := maxw∈outputs(C) depthE(w). The depth depthE(w)

captures the minimum number of broadcast rounds required to obtain an encoded

evaluation of w, and counts the number of gates on a path to w with conflicting temporal

dependencies (i.e., with dependency sets whose intersection is empty).

Again, a formal technical definition follows.

We set depthE(w) := 0 for w ∈ inputs(C) and for all other w 6∈ inputs(C) define depthE(w)

as follows:

depthE(w) :=

0 if type(gw) = const

maxw′∈inputs(gw) depthE(w
′) + baddw if type(gw) = add

depthE(L-input(gw)) if type(gw) = mul and R-input(gw) does not depend on any inputs

depthE(L-input(gw)) + binpw if type(gw) = mul and R-input(gw) is a circuit input

depthE(mul-wit1(C, gw)) + bprivw if type(gw) = mul and R-input(gw) is a non-constant, non-input wire of C

where:

– baddw ∈ {0, 1} is 1 if and only if
⋂

w′∈inputs(gw) ds(w′) = ∅; and

– binpw ∈ {0, 1} is 1 if and only if ds(L-input(gw)) ∩ ds(R-input(gw)) = ∅ or L-input(gw)

does not depend on any inputs.

– bprivw ∈ {0, 1} is 1 if and only if ds(mul-wit1(C, gw))∩ds(R-input(gw)) = ∅ or L-input(gw)

does not depend on any inputs. Note that in this case we have ds(R-input(gw)) =

ds(mul-wit2(C, gw)) = ds(mul-wit3(C, gw)) = {i}, where i is the party on whose inputs

R-input(gw) depends on.

3.3.5 Pairings and duplex-pairing groups

Pairings. Let G1 and G2 be cyclic groups of a prime order r. Let G1 be a generator of

G1 (i.e., G1 = {αG1}α∈Fr) and let G2 be a generator for G2. A pairing is an efficient map
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e : G1 ×G2 → GT, where GT is also a cyclic group of order r (which, unlike other groups,

we write in multiplicative notation), satisfying the following properties.

• BILINEARITY. For every pair of nonzero elements α, β ∈ Fr, it holds that e(αG1, βG2) =

e(G1,G2)
αβ.

• NON-DEGENERACY. e(G1,G2) is not the identity in GT.

Duplex-pairing groups. A group G of prime order r is duplex pairing if there are order-r

groups G1 and G2 such that (i) there is a pairing e : G1 ×G2 → GT for some target group

GT, and (ii) there are generators G1 of G1 and G2 of G2 such that G is isomorphic to

{(αG1, αG2) | α ∈ Fr} ⊆ G1 ×G2.

3.4 Secure multi-party computation

The security goal of our sampling protocol is formalized, via the language of secure

multi-party computation, as realizing a certain ideal functionality. We specialize standard

definitions of secure multi-party computation [GMW87b, BOGW88] to our setting, by

considering parties’ inputs that are field elements rather than bit strings, by considering

families of functionalities rather than a single functionality, and making explicit the notion

of a (transcript) verifier. These definitions provide background and notation for this paper

(and closely follow the treatment in [AL11]). We assume familiarity with simulation-based

security definitions; for more, see [AL11].

3.4.1 Multi-party broadcast protocols with common random strings

We consider multi-party protocols that run over a synchronous network with an authen-

ticated broadcast channel and a common random string. Before the protocol begins, a

random string of a certain prescribed length, denoted crs, is made available to all parties; to

simplify notation, we do not make crs an explicit input. Afterwards, the protocol proceeds

in rounds and, at each round, the protocol’s schedule determines which parties act; a party

acts by broadcasting a message to all other parties. The broadcast channel is authenticated

in that all parties always know who sent a particular message (regardless of what an

adversary may do). We now introduce some notations and notions for later discussions.

Honest execution. Given a positive integer n, an n-party broadcast protocol is a tuple

Π = (S, Σ1, . . . , Σn) where S : N→ 2{1,...,n} is the deterministic polynomial-time schedule

function and, for i = 1, . . . , n, Σi is the (possibly stateful) probabilistic polynomial-time
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strategy of party i.

The execution of Π on an input ~x = (x1, . . . , xn), denoted [[Π,~x]], works as follows. Set

t := 1. While S(t) 6= ∅: (i) for each i ∈ S(t) in any order, party i runs Σi, on input (xi, t)

and with oracle access to the history of messages broadcast so far, and broadcasts the

resulting output message msgt,i and, then, (ii) t increases by 1.

The transcript of [[Π,~x]], denoted tr, is the sequence of triples (t, i, msgt,i) ordered by

msgt,i’s broadcast time. The output of [[Π,~x]], denoted out, is the last message in the

transcript. Since Π’s strategies are probabilistic, the transcript and output of [[Π,~x]] are

random variables.

The round complexity is ROUND(Π) := mint∈N{t | S(t + 1) = ∅}. For i = 1, . . . , n,

the time complexity of party i is TIME(Π, i) := ∑t∈[ROUND(Π)] s.t. i∈S(t) TIME(Σi, t) where

TIME(Σi, t) is Σi(·, t)’ time complexity. In our construction, the worst-case time complexity

matches the expected time complexity.

Adversarial execution. Let A be a probabilistic polynomial-time algorithm and J a subset

of {1, . . . , n}. We denote by [[Π,~x]]A,J the execution [[Π,~x]] modified so that A controls

parties in J, i.e., A knows the private states of parties in J, may alter the strategies of

parties in J, and may wait, in each round, to first see the messages broadcast by parties

not in J and, only after that, instruct parties in J to send their messages. (In particular,

[[Π,~x]]A,∅ = [[Π,~x]].) We denote by REALΠ,A,J(~x) the concatenation of the output of

[[Π,~x]]A,J and the view of A in [[Π,~x]]A,J .

3.4.2 Ideal functionalities

While Section 3.4.1 describes the real-world execution of a protocol Π on an input ~x, here

we describe the ideal-world execution of a function f on an input ~x: each party i privately

sends his input xi to a trusted party, who broadcasts f (~x).

Adversarial execution. Let S be a probabilistic polynomial-time algorithm and J a subset

of {1, . . . , n}. The ideal-world execution of f on ~x when S controls parties in J differs from

the above one as follows: S may substitute the inputs of parties in J with other same-length

inputs. We denote by IDEAL f ,S,J(~x) the concatenation of the value broadcast by the trusted

party and the output of S in the ideal-world execution of f on ~x when S controls parties in

J.
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3.4.3 Secure sampling broadcast protocols

We define the notion of a secure sampling broadcast protocol, which captures our main

security goal, i.e., a multi-party protocol for securely sampling the encoding of the random

evaluation of a given circuit.

Let r be a prime, G = 〈G〉 an order-r group, n a positive integer, and C : Fm
r → Fh

r an

Fr-arithmetic circuit. A secure sampling broadcast protocol with n parties for C over G

is a tuple ΠS = (Π, V, S), where Π is an n-party broadcast protocol, and V (the verifier) and

S (the simulator) are probabilistic polynomial-time algorithms, that satisfies the following.

For every probabilistic polynomial-time algorithm A (the adversary) and subset J of

{1, . . . , n} (the corrupted parties) with |J| < n (i.e., with at least one honest party), it holds

thatREALΠ,A,J(~σ)

∣∣∣∣∣∣∣∣
~σ1 ← Fm

r
...

~σn ← Fm
r


V=1

negl
=

IDEAL f Sn,C,G ,S(A,J),J(~σ)

∣∣∣∣∣∣∣∣
~σ1 ← (F∗r )

m

...

~σn ← (F∗r )
m


S 6=abort

,

where:

• ~σ denotes (~σ1, . . . ,~σn);

• V = 1 denotes conditioning on the event that V, on input the transcript of [[Π,~x]]A,J ,

outputs 1;

• S 6= abort denotes the event that S in the ideal-world execution of f Sn,C,G on~σ does not

output the special symbol abort; and

• f Sn,C,G denotes the deterministic function such that f Sn,C,G(σ) := C((∏n
i=1 σi,1, . . . , ∏n

i=1 σi,m)) ·
G.

Extending the definition to variable number of parties and restricted circuit classes.

Let r be a prime, G = 〈G〉 a group of order r, and C a class of Fr-arithmetic circuits. A

secure sampling broadcast protocol for C over G is a tuple ΠS = (Π, V, S) such that,

for every positive integer n and circuit C : Fm
r → Fh

r in C, (Πn,C, Vn,C, Sn,C) is a secure

sampling broadcast protocol with n parties for C over G.

3.4.4 Secure evaluation broadcast protocols

We define the notion of a secure evaluation broadcast protocol, which captures an interme-

diate security goal, consisting of a multi-party protocol for jointly computing the encoding

of the evaluation of a given circuit whose inputs are split into slots, with one slot per party.
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(As described in Section 3.5, we reduce sampling to evaluation.)

Let r be a prime, G = 〈G〉 an order-r group, n a positive integer, and C : F
m1
r × · · · ×

F
mn
r → Fh

r an Fr-arithmetic circuit. A secure evaluation broadcast protocol with n parties

for C over G is a tuple ΠE = (Π, V, S), where Π is an n-party broadcast protocol, and

V (the verifier) and S (the simulator) are probabilistic polynomial-time algorithms, that

satisfies the following.

For every probabilistic polynomial-time algorithm A (the adversary), subset J of {1, . . . , n}
(the corrupted parties) with |J| < n (i.e., with at least one honest party), and input

~σ = (~σ1, . . . ,~σn) in F
m1
r × · · · ×F

mn
r , it holds that

{
REALΠ,A,J(~σ)

}
V=1

negl
=
{

IDEAL fEC,G ,S(A,J),J(~σ)
}

S 6=abort
.

where:

• V = 1 denotes the event that V, on input the transcript of [[Π,~x]]A,J , outputs 1;

• S 6= abort denotes the event that S in the ideal-world execution of f EC,G on~σ does not

output the special symbol abort; and

• f EC,G denotes the deterministic function such that f EC,G(~σ) takes the value f EC,G(~σ) := ⊥ if

~σ 6∈ valid-inputs(C), and otherwise takes the value f EC,G(~σ) := C(~σ) · G.

Extending the definition to variable number of parties and restricted circuit classes.

Let r be a prime, G = 〈G〉 a group of order r, and C a class of Fr-arithmetic circuits. A

secure evaluation broadcast protocol for C over G is a tuple ΠE = (Π, V, S) such that,

for every positive integer n and circuit C : F
m1
r × · · · ×F

mn
r → Fh

r in C, (Πn,C, Vn,C, Sn,C) is

a secure evaluation broadcast protocol with n parties for C over G.

3.5 Secure sampling for a class of circuits

Our main construction is a multi-party protocol for securely sampling values of the form

C(~α) · G for a random~α, provided that C belongs to the class CS. We use two cryptographic

ingredients: commitment schemes (see Section 3.3.2) and NIZKs (see Section 3.3.3); both

rely on a common random string, available in our setting (see Section 3.4.1).

Theorem 3.5.1. Assume the existence of commitment schemes and NIZKs. Let r be a prime and

G a group of order r. There is a secure sampling broadcast protocol ΠS = (Π, V, S) for CS over G

such that, for every positive integer n and circuit C in CS, the following holds.

• Round efficiency: ROUND(Πn,C) = n · depthS(C) + 3.
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• Execution efficiency: for i = 1, . . . , n, TIME(Πn,C, i) = Oλ(size(C)).

• Verification efficiency: Vn,C runs in time Oλ(n · size(C)).

• Simulation efficiency: Sn,C runs in time Oλ(n · size(C)).

Later on we discuss efficient instantiations for the above commitment schemes and

NIZKs (when further relying on random oracles); see Section 3.6. Also, our implementation

and evaluation target the case when G is a duplex-pairing group (defined in Section 3.3.5);

see Section 3.7 and Section 3.8.

Proof strategy. We construct the protocol of Theorem 3.5.1 in two steps. The first step

(Lemma 3.5.2) is a reduction from the problem of constructing secure sampling broadcast

protocols to the problem of constructing secure evaluation broadcast protocols. The second

step (Lemma 3.5.3) is a construction of such a secure evaluation broadcast protocol.

Lemma 3.5.2 (Sampling-to-evaluation reduction). Let r be a prime and G a group of order r.

There exist polynomial-time transformations T1 and T2 for which the following holds.

• For every positive integer n and circuit C in CS:

– C̃ := T1(n, C) is a circuit in CE;

– ΠS := T2(ΠE) is a secure sampling broadcast protocol with n parties for C over G for every

ΠE that is a secure evaluation broadcast protocol with n parties for C over G.

• T1 builds a new circuit C̃ that is not much “costlier” than C:

– depthE(C̃) = n · depthS(C);

– size(C̃) = O(n · size(C)); and

– size(C̃, i) = O(size(C)) for i = 1, . . . , n.

• T2 increases the protocol’s round complexity by 1, and preserves all time complexities up to

Oλ(1) factors.

Lemma 3.5.3 (Evaluation protocol). Assume the existence of commitment schemes and NIZKs.

Let r be a prime and G a group of order r. There is a secure evaluation broadcast protocol

ΠE = (Π, V, S) for CE over G such that, for every positive integer n and circuit C in CE:

• ROUND(Πn,C) = depthE(C) + 2;

• TIME(Πn,C, i) = Oλ(size(C, i)) for i = 1, . . . , n; and

• Vn,C and Sn,C run in time Oλ(size(C)).

Proofs of Lemma 3.5.2 and Lemma 3.5.3 are given in Appendix 3.10 and Appendix 3.11,

and sketched below.
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Figure 3.2: Example of a circuit C in CS and the corresponding circuit C̃ := T1(C, n) in CE

for n = 2 parties. This toy example corresponds to an “failed attempt” (see Section 3.5.1)
as the straight-forward duplicate and multiply strategy does not preserve zero-knowledge
when generalized.
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(a) Example where C has only multiplication gates.
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(b) Example where C has both addition and multipli-
cation gates.

Figure 3.3: Two examples of a circuit C in CS and the corresponding circuit C̃ := T1(C, n)
in CE for n = 2 parties. The blue arrows in C denote the output wires of C; the blue arrows
in C̃ denote the output wires of C̃ that compute outputs of C (while the remaining output
wires carry partial computations).

3.5.1 Sketch of the sampling-to-evaluation reduction

We sketch the proof of Lemma 3.5.2. At a high level, the two transformations T1 and T2

work as follows.

• The circuit transformation T1, given the number of parties n and a circuit C in CS,

outputs a circuit C̃ ∈ CE that computes C’s output, along with other auxiliary values,

by suitably combining n multiplicative shares of C’s input. (The alternative option of

additive sharing results in worse efficiency parameters for C̃.)

• The protocol transformation T2, given a secure evaluation protocol ΠE for C̃, outputs

a secure sampling protocol ΠS for C by: (i) generating random shares for all inputs,

to ensure uniform sampling; (ii) extending the protocol by one last round, to obtain a

correctly-formatted output for C; (iii) extending the verifier, to account for the additional
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round in the transcript; and (iv) extending the simulator, to account for the different ideal

functionality (i.e., f Sn,C,G instead of f EC̃,G), whose output excludes the aforementioned

auxiliary values (which, hence, must be simulated).

Technically, most of the effort goes into constructing C̃ and the simulator of ΠS. We thus

briefly discuss these two.

The circuit C̃. The circuit C̃ must compute C’s output from n multiplicative shares of C’s

input (chosen at random). If this were the only requirement, then we could simply set

C̃ equal to the circuit that, given as input n shares~α(1), . . . ,~α(n) ∈ Fm, first combines the

shares into~α := (∏n
j=1 α

(j)
1 , . . . , ∏n

j=1 α
(j)
m ) ∈ Fm and then computes C(~α). Unfortunately,

such a circuit is not in the class CE, and thus we cannot invoke Lemma 3.5.3 to securely

evaluate C̃ (nor do we know how to obtain an efficient protocol that does). The difficulty

thus lies in constructing a circuit C̃ that computes the same function (perhaps with some

additional, though simulatable, outputs) and that, moreover, is in CE.

We thus take an alternative approach, which leverages the fact that C lies in the class

CS. Intuitively, instead of combining shares at the beginning, C̃ combines shares “on the

fly”, as the circuit is computed, as we now describe. We first focus on the simple case

where C has no addition gates, i.e., all gates are either multiplication gates or constant

gates. The circuit produced by our approach might seem more complex than necessary; to

motivate our approach we thus consider a straight-forward “failed attempt”.

Attempt: duplicate and multiply. Consider the following approach for constructing C̃:

have C̃ contain n copies of C as a subcircuit (one for each party) such that the #inputs(C)

inputs of each copy are assigned to a separate input slot of C̃; corresponding outputs of each

copy are then multiplied together, thereby combining the shares, via (n− 1) · #outputs(C)

auxiliary multiplication gates. See Figure 3.2 for an example of this approach. Alas, natural

extensions of this approach for handling both addition and multiplication gates do not

preserve zero-knowledge. See Section 3.10 for detailed discussion.

Our approach. The “failed approach” above can be salvaged by using a slightly different

circuit for combining n shares from the individual copies of C. That is, to circumvent issues

in simulation we require that outputs of n− 1 copies of C are not outputs of C̃; such “hiding”

modification is zero-knowledge, but not sound. To this end, we use 2(n− 1)-gate subcircuit

to multiply the n shares together, which, as compared to n− 1-gate subcircuit used above,

produces n− 1 additional auxiliary outputs. By carefully choosing the topology of this

combining subcircuit we ensure that all of its output wires can be simulated, and that

auxiliary outputs suffice to check multiplications by the “hidden” wires. See Figure 3.3a
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for an example of this approach.

More generally, of course, C may include addition gates and, in such a case, the

reduction is more complex, because merely individually evaluating n copies of C and

then combining corresponding outputs does not compute the correct function. The reason

is not surprising: while multiplicative sharing of inputs commutes with multiplication,

it does not commute with addition, and thus it is hard to obtain multiplicative shares

of the result of an addition. To circumvent this problem, we break the circuit down

into components “separated” by additions, and apply the above idea separately to each.

In-between components, before each addition, we combine shares.

In more detail, our construction works as follows. For each maximal subcircuit Cmuls of

C consisting solely of multiplication gates and constant gates, we add n copies of Cmuls to

C̃ and assign each copy to a party, who is responsible to evaluate the copy on his shares of

the input. We require that gate output wires in copy assigned to party 1 also be be outputs

of C̃ and that output wires from n− 1 remaining copies of C be internal wires of C̃.

For each multiplication gate g of C we identify the n corresponding copies g1, . . . , gn

in C̃ and add a subcircuit Cg that computes the product ∏n
i=1 output(gi), via 2(n− 1) + 1

multiplication gates; since inputs are multiplicatively shared, the (main) output of Cg

equals the output of g. Finally, for each addition gate g of C we add one addition gate g̃

to C̃ with the following topological modification: whenever g references an output of a

multiplication gate g′ in C, we set g̃ to reference the output of the corresponding subcircuit

Cg′ . The construction ensures that the outputs of multiplication gates in C match the

outputs of corresponding subcircuits in C̃; similarly, the outputs of addition gates in C

match the outputs of corresponding addition gates in C̃. See Figure 3.3b for an example.

A notable efficiency feature of our reduction is that it ensures that the E-depth of C̃,

which determines the number of rounds required to securely evaluate C̃, is “small”: it is

bounded above by n times the S-depth of C. Indeed, there are multiple ways to combine

the aforementioned subcircuits, but many such ways yield much worse efficiency, e.g.,

E-depth that is as worse as n times the (standard) depth of C. Since the circuits C that we

encounter in this paper’s application have a small S-depth, this feature is critical.

The simulator in ΠS. The construction of C̃ must not only respect syntactic and efficiency

requirements (e.g., lie in CE, not have more than n · size(C) gates, and so on), but must

also be secure, in the sense that the ideal functionality f EC̃,G implemented by the evaluation

protocol ΠE for C̃ actually gives rise (with some simple changes) to a sampling protocol

ΠS that implements the ideal functionality f Sn,C,G . Since our construction of C̃ introduces
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additional, spurious outputs, the simulator in ΠS must be able to reproduce the view of

the adversary when only having access to C’s output (rather than C̃’s output). Intuitively,

this requires showing that partial computations that carry information about a subset of

the parties’ shares do not leak additional information beyond the outputs that incorporate

every party’s share.

For an arbitrary circuit in CE such an argument cannot be carried out. However, for

the particular circuit C̃ that is constructed from C we show that it is possible to “back

compute” the circuit: given the output of C, the simulator can complete it into an output

of C̃ by sampling an assignment to the remaining (spurious) output wires of C̃, such that

the simulated output is indistinguishable from an evaluation of C̃. This is done by taking

each subcircuit in C̃ and computing backwards from its output.

3.5.2 Sketch of the evaluation protocol

We sketch the proof of Lemma 3.5.3. At a high level, the evaluation protocol ΠE = (Π,

V, S) for the circuit class CE over a group G of order r works as follows. Fix a number of

parties n and a circuit C in CE.

• In the first round (i.e., t = 1):

Each party i individually commits to each one of his own private inputs, i.e., each party

i commits to the values assigned to wires in inputs(C, i), and proves, in zero knowledge,

knowledge of the committed values; the NP relation used in this case isRA in Figure 3.4.

Moreover, each party broadcasts the commitments and the NIZK proofs.

• In each one of the subsequent depthE(C) rounds (i.e., t = 2, . . . , depthE(C) + 1):

Each party i determines if there are any gates g in gates(C) such that

(i) the E-depth of output(g) equals the round number minus 1 (i.e., t− 1), and

(ii) i is in the dependency set for output(g) (i.e., i ∈ ds(output(g))).

If so, then party i computes an encoding of the output of each such gate, taken in

topological order, and broadcasts this encoding, along with a zero-knowledge proof

of its correctness, if needed. The technical conditions above ensure that party i has all

the necessary information to compute output(g) at round t. There are three cases to

consider:

– Case 1: type(g) = const.
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Say that the gate g computes w← α. Party i computes and broadcasts the G-element

R := α · G, which encodes the value of the output wire w. Anyone can verify the cor-

rectness of the constant encoding, since the coefficient is public, so no zero-knowledge

proof is required.

– Case 2: type(g) = add.

Say that the gate g computes w ← ∑d
j=1 αjwj. Party i consults broadcast messages

(including those the party i computed in this round) to obtain P1, . . . ,Pd ∈ G that

respectively encode the values of the input wires w1, . . . , wd; he then computes and

broadcasts the G-element R := ∑d
j=1 αj · Pj, which encodes the value of the output

wire w. Anyone can verify the correctness of the addition, since the coefficients are

public and the addends are part of the transcript, so no zero-knowledge proof is

required.

– Case 3: type(g) = mul.

Say that the gate g computes w ← αwLwR. The value σ ∈ Fr of the wire wR depends

only on values of wires in inputs(C, i), because C belongs to CE. Thus, given an

encoding P ∈ G of the value of wL, party i can multiply it by α and σ, to obtain

an encoding R ∈ G of the value of w. To prove that the multiplication was carried

out consistently, party i produces a zero-knowledge proof for the relation RB,inp or

RB,priv in Figure 3.4, which captures the semantics of correct “right multiplication”,

depending on whether wR is an input to the circuit (captured byRB,inp) or not (captured

byRB,priv), as follows:

∗ If wR ∈ inputs(C, i), then instance x forRB,inp is a tuple of the form (crs, cm,R,P , α)

and a witness w is a tuple of the form (σ, cr). Membership in RB,inp requires that

R = ασ · P and cm is a commitment to σ with randomness cr (relative to the

common random string crs for the commitment scheme COMM);

∗ If wR 6∈ inputs(C, i), then instance x forRB,priv is a tuple of the form (R,P ,Q1,Q2, α)

and a witness w is a tuple of the form (σ1, σ2). Membership inRB,priv requires that

σ2R = ασ1 · P and Q1 and Q2 are encoding of σ1 and σ2, respectively.

In sum, the parties prove correct evaluation of all gates of C, first processing all gates

whose outputs have E-depth 1, then all those whose outputs have E-depth 2, and so on.

• After depthE(C) such rounds, in the last round (i.e., t = depthE(C) + 2):

Party 1 consults the broadcast messages so to gather, and broadcast in a single message,

the encoding of the value of every output of C. The purpose of this last round is to
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construct a syntactically well-formed output of the protocol; tasking party 1 to do so is

an arbitrary choice.

Since the circuit C belongs to the circuit class CE, by definition of CE, whenever a party

i is supposed to prove correct evaluation of a gate g, it can do so: (i) if g is an addition

gate, then encodings for g’s inputs have been broadcast in previous rounds (or computed

by i in this round); and (ii) if g is a multiplication gate, an encoding for g’s left input has

been broadcast in previous rounds (or computed by i in this round) and i knows the value

for its right input. In both cases described above, as well as for computing constant gates,

party i can compute an encoding for g’s output, and knows a witness to the NP statement

that attests to this encoding’s correctness. Moreover, note that, again since C belongs to

CE, every gate’s output wire is also an output wire of C, so that broadcasting encodings of

every gate’s output does not leak information beyond what is leaked by the output of the

ideal functionality, which is C(~σ) · G.

The transcript of broadcast messages can be checked by a verifier V that ensures that

the following three properties hold: (1) input commitments carry valid proofs; (2) for

each addition gate, the purported output agrees with the direct evaluation of the linear

combination; and (3) for each multiplication gate, the party responsible for that gate has

produced a valid proof for its evaluation (based on suitable prior values). These checks

ensure that the circuit has been consistently evaluated on the parties’ private inputs.

Finally, the transcript can be generated by a simulator S, having access to the encoding

of the circuit’s output, by simulating each proof of correct evaluation.

A subtle technical note is that since the evaluation protocol is only required for valid

inputs of C, i.e., inputs in valid-inputs(C), we avoid pathological cases. For example, the

choice of valid valid-inputs(C) for the circuits C in the class CE ensures that σ2 exists in the

second sub-case of the Case 3 above.

3.6 Instantiations and optimizations

We discuss how to instantiate and optimize the construction in the proof of Theorem 3.5.1.

The sampling protocol of Theorem 3.5.1 is obtained in two steps: a reduction from sampling

to evaluation (Lemma 3.5.2), and an evaluation protocol (Lemma 3.5.3). The reduction is

explicit and efficient, so we focus on instantiating and optimizing the evaluation protocol,

by suitably instantiating the commitment scheme COMM and NIZKs.

In short, we instantiate COMM via Pedersen commitments [Ped92], and the NIZKs via
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The NP relationRA. An instance-witness pair (x,w) is inRA if and only if all the following checks
pass.
1. Parse x as tuple (crs?, cm) for which crs? is a common random string for COMM and cm is a

commitment.
2. Parse w as a tuple (σ, cr) for which σ is an element in Fr and cr is commitment randomness.
3. Check that COMM.V(crs?, σ, cm, cr) = 1.

The NP relationRB,inp. An instance-witness pair (x,w) is inRB,inp if and only if all the following
checks pass.
1. Parse x as tuple (crs?, cm,R,P , α) for which crs? is a common random string for COMM, cm is a

commitment,R and P are elements in G, and α is an element in Fr.
2. Parse w as a tuple (σ, cr) for which σ is an element in Fr and cr is commitment randomness.
3. Check thatR = ασ · P .
4. Check that COMM.V(crs?, σ, cm, cr) = 1.

The NP relationRB,priv. An instance-witness pair (x,w) is inRB,priv if and only if all the following
checks pass.
1. Parse x as tuple (R,P ,Q1,Q2, α) for whichR,P ,Q1,Q2 are elements in G and α is an element

in Fr.
2. Parse w as a tuple (σ1, σ2) for which σ1 and σ2 are elements in Fr.
3. Check that Q1 = σ1 · G and Q2 = σ2 · G.
4. Check that σ2R = ασ1 · P (in particular, thatR = α σ1

σ2
· P if σ2 6= 0).

Figure 3.4: Description of the three NP relationsRA,RB,inp,RB,priv.

Σ-protocols to which we apply the Fiat–Shamir heuristic [FS87]. The use of NIZKs in the

evaluation protocol is “light”: the evaluation protocol uses NIZKs for three NP relations

that involve only arithmetic in G and invocations of the commitment verifier COMM.V; we

denote these three relations byRA,RB,inp,RB,priv and define them in Figure 3.4. Moreover,

the theorem relies on the NIZK proof of knowledge only when proving statements relative

to RA, but not when proving statements relative to RB,inp or RB,priv. We instantiate the

NIZKs by relying on a random oracle H that maps {0, 1}∗ to Fr (which then replaces

the NIZK common random strings as a setup assumption) because we apply the Fiat–

Shamir heuristic [FS87] to certain Σ-protocols, discussed further below. In our code

implementation we heuristically instantiate H via the SHA256 hash function. We now

describe the instantiation of COMM and those of the NIZKs for the three relations.

Choice of the commitment scheme. We use Pedersen commitments [Ped92] to instantiate

COMM. The common random string crs? consists of two generators of G for which there is

no known linear relation: crs? := (G,G ′). If G is a prime-order elliptic curve group, G and

G ′ can be found by applying point decompression to two random strings or, heuristically, to

SHA256(0) and SHA256(1). The generator COMM.G and verifier COMM.V work as follows.
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• COMM.G(crs?, σ)→ (cm, cr):

1. Parse the common random string crs? as a pair (G,G ′).
2. Sample the commitment randomness cr to be a random element of Fr.

3. Compute the commitment cm as cm := σ · G + cr · G ′ ∈ G.

4. Return (cm, cr).

• COMM.V(crs?, σ, cm, cr)→ b:

1. Parse the common random string crs? as a pair (G,G ′).
2. Compute ĉm := σ · G + cr · G ′ ∈ G.

3. If cm = ĉm, return b := 1; otherwise, return b := 0.

The value of cr · G ′ is uniformly random in G, so cm is statistically hiding. Given two

decommitments and corresponding commitment randomnesses (σ1, cr1) and (σ2, cr1) with

σ1 6= σ2 one can compute logG G ′ := (cr2 − cr1)/(σ2 − σ1). Therefore cm is also computa-

tionally binding given the hardness of finding discrete logarithms in G.

Choice of NIZK for the relation RA. The relationRA captures the semantics of knowing

the value σ hidden in a commitment cm for the scheme COMM. An instance x has the

form (crs?, cm), while a witness w has the form (σ, cr); a pair (x,w) is inRA if and only if

COMM.V(crs?, σ, cm, cr) = 1. Given that COMM is instantiated via Pedersen commitments

(see above), we use an adapted version of Schnorr’s protocol for proving knowledge of

discrete logarithms [Sch91] to obtain a NIZK (of knowledge) forRA. Below, we directly

describe the non-interactive protocol obtained after applying the Fiat–Shamir heuristic

based on a random oracleH. The prover NIZKRA .P and verifier NIZKRA .V work as follows.

• NIZKRA .P(H, x,w)→ π:

1. Parse the instance x as (crs?, cm) and crs? as (G,G ′), and parse the witness w as (σ, cr).

2. Sample the announcement nonces γ, δ ∈ Fr at random.

3. Compute the announcementR asR := γ · G + δ · G ′ ∈ G.

4. Compute the challenge c as c := H(crs?‖cm‖R) ∈ Fr.

5. Compute the response (µ, ν) as µ := γ + c · σ ∈ Fr and ν := δ + c · cr ∈ Fr.

6. Return π := (R, µ, ν).

• NIZKRA .V(H, x, π)→ b:

1. Parse the instance x as (crs?, cm) and crs? as (G,G ′), and parse the proof π as (R, µ, ν).

2. Compute the challenge c as c := H(crs?‖cm‖R) ∈ Fr.

3. Check if µ · G + ν · G ′ = R+ c · cm. If so, return b := 1; otherwise, return b := 0.

One can check that the above construction is a zero knowledge proof of knowledge in the

random oracle model.
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Choice of NIZK for the relation RB,inp. The relation RB,inp captures the semantics of

correct evaluation of a “multiplication-by-input” gate, i.e., of correctly multiplying an

encoding P of a wire value by a (plain) wire value σ to obtain the encodingR of the output

wire. An instance x has the form (crs?, cm,R,P , α), while a witness w has the form (σ, cr).

We have that (x,w) ∈ RB,inp if and only ifR = ασ · P and COMM.V(crs?, σ, cm, cr) = 1.

To implement this relation we use equality composition [CP92] of the following two

Σ-protocols: (i) the protocol for knowledge of a Pedersen commitment outlined above;

and (ii) Schnorr’s protocol for knowledge of an “implicit” discrete logarithm. As before,

we directly describe the non-interactive protocol obtained after applying the Fiat–Shamir

heuristic based on a random oracle H. The prover NIZKRB,inp .P and verifier NIZKRB,inp .V

work as follows.

• NIZKRB,inp .P(H, x,w)→ π:

1. Parse the instance x as (crs?, cm,R,P , α) and crs? as (G,G ′), and parse the witness w

as (σ, cr).

2. Sample the announcement nonces γ, δ ∈ Fr at random.

3. Compute the announcement (X ,Y) as X := γ · G + δ · G ′ ∈ G and Y := αγ · P ∈ G.

4. Compute the challenge c as c := H(crs?‖cm‖X ‖Y) ∈ Fr.

5. Compute the response (u, v) as u := γ · c + σ ∈ Fr and v := δ · c + cr ∈ Fr.

6. Return π := (X ,Y , u, v).

• NIZKRB,inp .V(H, x, π)→ b:

1. Parse the instance x as (crs?, cm,R,P , α) and crs? as (G,G ′).
2. Parse the proof π as (X ,Y , u, v).

3. Compute the challenge c as c := H(crs?‖cm‖X ‖Y) ∈ Fr.

4. Check if u · G + v · G ′ = c · X + cm and αu · P = c · Y +R. If so, return b := 1;

otherwise, return b := 0.

One can check that the above construction is a zero knowledge proof in the random oracle

model; also, we do not need the construction to also be a proof of knowledge.

Choice of NIZK for the relation RB,priv. The relation RB,priv captures the semantics of

correct evaluation of a “multiplication-by-non-input” gate, i.e., of correctly multiplying an

encoding P of a wire value by a (plain) wire value σ to obtain the encodingR of the output

wire. The circuit membership in CE means that even if σ is not carried by a circuit output

wire, there do exist two output wires whose values σ1 and σ2 have ratio of σ = σ1
σ2

. An

instance x has the form (R,P ,Q1,Q2, α), while a witness has the form (σ1, σ2) for which

σ1, σ2 ∈ Fr. We have that (x,w) ∈ RB,priv if and only if σ2R = ασ1 · P and Q1 = σ1 · G,
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Q2 = σ2 · G.

In a duplex pairing group (see Section 3.3.5), the proof for this NIZK is just ⊥, because

the relationship captured by RB,inp is publicly verifiable: (x,w) ∈ RB,priv if and only if

e(Q2,R) = e(Q1, α · P). This construction is trivially a zero knowledge proof because the

proof is empty; also, we do not need the construction to also be a proof of knowledge. (Our

implementation and evaluation target the special case of duplex pairing groups, which

occurs, e.g., in the setting of public-parameter generation for zk-SNARKs.)

An optimization for repeated multiplications. The three NIZKs described above are

relatively lightweight, but our implementation leverages an additional optimization, for

duplex pairing groups, that we now describe. If an input wire w participates in more than

one multiplication gate, then only one multiplication by the value of w needs to carry a

NIZK proof forRB,inp and all other such multiplications do not require a proof in order to

check their correct evaluation; overall, we only need one NIZK proof forRB,inp per input

wire (and note that this optimization preserves zero knowledge). Details follow.

Let the input wire w be used in a multiplication gate g computing g : α · wL · w→ wout;

let σ be the value of w, cm the commitment to σ, and P ,R the encodings of the values of

wL, wout. To ensure that 1
α logP R equals σ hidden in cm, we produce a NIZK proof π for a

suitable instance x ofRB,inp. But now suppose that w is also used in another multiplication

gate g̃ computing g̃ : α̃ · w̃L · w→ w̃out, and let P̃ , R̃ be the encodings of the values of the

wires w̃L, w̃out. Then, given π, α, P , andR (all in x), anyone can verify that 1
α̃ logP̃ R̃ equals

σ hidden in cm by checking that e(P , R̃)α = e(P̃ ,R)α̃ (because this implies that 1
α̃ logP̃ R̃

equals 1
α logP R, which equals σ as attested to by π), so that no new proof π̃ is required

for this second statement.

3.7 Implementation

Our system. We built a system that implements our constructions for duplex pairing

groups (see Section 3.3.5). Given a prime r, an order-r duplex-pairing group G = 〈G〉,
and an Fr-arithmetic circuit C : Fm

r → Fh
r in the class CS, our system provides a multi-

party protocol for securely sampling C(~α) · G for random~α in Fm
r . Specifically, the system

instantiates and implements the constructions underlying Section 3.5’s theorems, in the

case when G is a duplex-pairing group. Our system comprises 1141 lines of C++.

Application to zk-SNARKs via integration with libsnark. The parameter generator of

many zk-SNARK constructions works as follows: evaluate a certain circuit C at a random
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input~α, and then output pp := C(~α) · G as the proof system’s public parameters. (See

discussion in Section 3.1.2.) Thus, our system can be used to securely sample public

parameters of a zk-SNARK, provided that the circuit used in its generator belongs to the

circuit class CS. To facilitate this application, we have integrated our code with libsnark

[SCI], a C++ library for zk-SNARKs. (In particular, the sampled pp can be used directly by

libsnark.)

Two zk-SNARK constructions. We worked out circuits for parameter generation for two

(preprocessing) zk-SNARK constructions: the one of [PGHR13, BCTV14c] and the one

of [DFGK14]. The first zk-SNARK “natively” supports proving satisfiability of arithmetic

circuits, while the second zk-SNARK that of boolean circuits.5

Specifically, we wrote code that produces a circuit CPGHR ∈ CS that can be used to

generate public parameters for [PGHR13, BCTV14c]’s zk-SNARK; likewise for producing

a circuit CDFGK ∈ CS for [DFGK14]’s zk-SNARK. We have invoked our system on both

circuit types, and demonstrated the secure sampling of respective public parameters.

See Appendix 3.12 for more information about these examples. A critical issue dis-

cussed there is ensuring that CPGHR and CDFGK have size quasilinear in the size of the

circuit whose satisfiability is being proved. A naive implementation of the computation

pattern of the zk-SNARK’s generator results in circuits that are not in CS; conversely,

a naive implementation in CS results in circuits of quadratic size. Via careful design,

quasilinear-size circuits in CS can be obtained.

3.8 Evaluation

We report the evaluation of our system (described in Section 3.7).

Setup. We evaluated our system on a desktop PC with a 3.40 GHz Intel Core i7-4770 CPU

and 16 GB of RAM available. All experiments are in single-thread mode (though our code

also supports multiple-thread mode).

When invoking functionality from libsnark (with which our code is integrated), we

need to specify, via a build option, a pairing-friendly elliptic curve, which determines how

the duplex-pairing group G is instantiated. The libsnark library offers (among others) the

following pairing-friendly elliptic curves:

5More precisely, both [PGHR13, BCTV14c] and [DFGK14] actually support more general NP relations
(phrased in terms of systems of equations) but, for simplicity, we ignore this technical detail in this and later
discussions.
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• BN-128 (a Barreto–Naehrig curve [BN06] at 128 bits of security);

• MNT4-80 (a Miyaji—Nakabayashi—Takano curve with embedding degree 4 [MNT01]

at 80 bits of security); and

• MNT6-80 (a Miyaji—Nakabayashi—Takano curve with embedding degree 6 [MNT01]

at 80 bits of security).

The first option implies that G’s order r is a 256-bit prime, and is our default choice for

experiments. The second and third options each imply that r is a 298-bit prime, and are

used in one of the zk-SNARK applications (see below).

Costs for the general case. Our system’s costs depend on the number n of participating

parties, and on the size and S-depth of the circuit C in CS. In Figure 3.6 we report cost

models for several complexity measures: the number of broadcast rounds, each party’s

time complexity, the number of broadcast messages, the transcript size, and the transcript

verification time. (Figure 3.6 also reports costs for two concrete examples, discussed further

down below.)

Costs for two zk-SNARK constructions. When applying our system to generate public

parameters for a zk-SNARK, we construct a circuit C in CS so that C(~α) · G (for random~α)

equals the zk-SNARK’s generator output distribution. This distribution depends on the

particular NP relation given as input to the generator; thus, the circuit C also depends on

this NP relation. Moreover, different zk-SNARK constructions “natively” support different

classes of NP relations.

In order to know our system’s efficiency when applied to generate zk-SNARK public

parameters, we report the size and S-depth of the circuit C as a function of the input NP

relation, relative to two zk-SNARK constructions.

• The zk-SNARK [DFGK14]. This zk-SNARK supports boolean circuit satisfiability: the

generator receives as input a boolean circuit D, and outputs public parameters for prov-

ing D’s satisfiability. If D has Nw wires and Ng gates, our code outputs a corresponding

circuit C := CDFGK with size 2Nw + 2dlog2 Nge(dlog2 Nge+ 1) + 10 and S-depth 2.

• The zk-SNARK of [PGHR13, BCTV14c]. This zk-SNARK supports arithmetic circuit sat-

isfiability: the generator receives as input an arithmetic circuit D, and outputs public

parameters for proving D’s satisfiability. If D has Nw wires and Ng gates, our code out-

puts a corresponding circuit C := CPGHR with size 11Nw + 2dlog2 Nge(dlog2 Nge+ 1) + 38

and S-depth 3.

75



zk-SNARK Circuit satisfiability of D when D is
Corresponding circuit C in CS

size(C) depth(C) depthS(C)
[DFGK14] a Nw-wire Ng-gate boolean circuit 2Nw + 2dlog2 Nge(dlog2 Nge+ 1) + 10 XXX : datapoint 2
[PGHR13, BCTV14c] a Nw-wire Ng-gate arithmetic circuit 11Nw + 2dlog2 Nge(dlog2 Nge+ 1) + 38 XXX : datapoint 3

[BCG+14] Example #1’s arithmetic circuit 138 467 206 XXX : datapoint 3
[BCTV14b] Example #2’s arithmetic circuit 8 027 609 XXX : datapoint 6

Figure 3.5: Size, depth, and S-depth of the circuit C in CS obtained from D, for various
choices of D.

Complexity measure
Cost for

general case Example #1 Example #2
(with BN-128) (with BN-128) (with MNT4-80 and MNT6-80)

number of broadcast rounds n · depthS(C) + 3 3n + 3 6n + 6
each party’s time complexity 0.035 · size(C) ms 14 124 s 4 048 s

number of broadcast messages n · (depthS(C) + 3) 6n 6n
transcript size 0.072 · n · size(C) kB 12 877 · n MB 906 · n MB

transcript verification time 1.03 · n · size(C) ms 196 208 · n s 50 945 · n s

Figure 3.6: Our system’s costs for the general case, Example #1, and Example #2; n is the
number of parties.

These costs are summarized in Figure 3.5 (alongside two concrete examples, discussed

next).

Costs for two concrete examples. We report costs for the following concrete choices of a

circuit C := CPGHR.

• Example #1: the circuit C targets Zerocash [BCG+14]. Namely, C(~α) · G (for random

~α) equals the output distribution of the generator of the preprocessing zk-SNARK on

which Zerocash is based. We selected this example because [BCG+14] ’s authors had

acknowledged the need, in practice, to securely sample Zerocash’s parameters.

• Example #2: the circuit C targets the scalable zk-SNARK of [BCTV14b]. Namely, C(~α) · G
(for random~α) equals the output distribution of the generator used to set up the scalable

zk-SNARK. We selected this example because, in this case, the generator’s output is

universal (it suffices for proving any computation expressed as machine code on a certain

RISC machine), so that the zk-SNARK’s parameters can be securely sampled once and

for all.

Figure 3.5 reports the size, depth, and S-depth of C for these two examples, and Figure 3.6

reports the corresponding costs of our system when run on these choices of C.
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3.9 Conclusion

Like time and space, trust is also a costly resource. To facilitate the deployment of NIZKs

and, in particular, zk-SNARKs in various applications, it is not only important to minimize

the time and space requirements of proving and verification, but also the trust requirements

of parameter generation.

The system that we have presented in this paper can be used to reduce the trust

requirements of parameter generation for a class of zk-SNARKs: the system provides

a multi-party broadcast protocol in which only one honest party, out of n participating

ones, is required to securely sample the public parameters. Integration of our system

with libsnark greatly facilitates this application. As a demonstration, we have used our

system for securely sampling public parameters for the zk-SNARKs of [PGHR13, BCTV14c,

DFGK14].

Several questions remain open. First, can our multi-party protocol (or a modification

of it) be proved secure against adaptive corruptions? Our analysis considered only non-

adaptive corruptions.

Next, can one efficiently support secure sampling for circuits C outside the class CS

(e.g., with division gates)? Supporting a larger circuit class C may let us (i) express the

generators of [PGHR13, BCTV14c, DFGK14] via circuits C in C with smaller costs, and

(ii) express the generators of additional zk-SNARK constructions via circuits C in C.

Finally, in this work we have not attempted to tackle the “human component” of

parameter generation. Namely, once we have a system that allows secure sampling via

a multi-party protocol, how should we choose the participating parties? What penalties

should be put in place for misbehavior, if any? Where and how should the protocol be

conducted? These questions, too, need good answers in order to convincingly sample

public parameters via the multi-party protocol.

3.10 Proof of Lemma 3.5.2

We prove Lemma 3.5.2. Specifically, first we describe the construction of the circuit

transformation T1, and then the construction of the protocol transformation T2; afterwards,

we explain why these constructions work.

Construction of T1. On input a positive integer n and a circuit C : Fm
r → Fh

r in the class

CS, the transformation T1 outputs a circuit C̃ in the class CE.
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First we describe high-level properties of the circuit C̃. The number of wires, gates,

inputs, and outputs of C̃ are at most a multiplicative factor of O(n) larger than those of C:

• #wires(C̃) ≤ (3n− 2) · #wires(C) + 1,

• #gates(C̃) = #const-gates(C) + #add-gates(C) + (3n− 2) · #mul-gates(C) + 1 ≤ (3n− 2) ·
#gates(C) + 1,

• #inputs(C̃) = n · #inputs(C), and

• #outputs(C̃) ≤ (2n− 1) · #outputs(C) + 1.

The inputs of C̃ are partitioned into n slots each of size m and, for each i, size(C̃, i) =

O(size(C)). In particular, we can write C̃ : Fm1 × · · · ×Fmn → Fnh with each mi equal to m.

The E-depth of C̃ is n times the S-depth of C: depthE(C̃) = n · depthS(C).

Moreover, there is a wire embedding from C to C̃, i.e., a map φ : outputs(C)→ outputs(C̃)

that works as follows. Consider any~α(1), . . . ,~α(n) ∈ Fm and let~α := (∏n
j=1 α

(j)
1 , . . . , ∏n

j=1 α
(j)
m ) ∈

Fm. Then, for every w ∈ outputs(C), the value assigned to w when computing C(~α) equals

the value assigned to φ(w) ∈ outputs(C̃) when computing C̃(~α(1), . . . ,~α(n)). In other words,

if C̃’s input corresponds to a multiplicative sharing, among n parties, of C’s input, then C̃’s

output contains C’s output (and other values), and φ specifies the embedding from the

latter into the former.

We now turn to the construction of the circuit C̃ from C. For notational convenience,

we assume that C’s wires have a topological order: for every wire w ∈ wires(C), idx(w)

denotes the index of w according to this order; also, C’s input wires have indexes from 1 to

m. Initialize C̃ to be an empty circuit with domain Fm1 × · · · ×Fmn , and denote by w̃i,k the

i-th input wire of C̃’s k-th input slot (i ranges from 1 to m and k ranges from 1 to n). The

procedure described below iteratively adds gates and wires to C̃ by considering in turn

each gate of C. It also builds a size #outputs(C) vector ~φ representing the wire embedding

φ.

Roughly, the circuit C̃ has the following structure:

• n copies of the sampling circuit C; each copy is assigned to a party tasked to evaluate C

on its shares of the input. In particular, for each wire wi of C, the circuit C̃ has n wires

w̃i,1, . . . , w̃i,n whose values correspond to multiplicative shares of wi’s value.

• For each wire wi of C that is an output of a multiplication gate, the circuit C̃ has 2n− 2

gates g̃auxi,2 , . . . , g̃auxi,n and g̃outi,2 , . . . , g̃outi,n with corresponding output wires w̃aux
i,2 , . . . , w̃aux

i,n and

w̃out
i,2 , . . . , w̃out

i,n tasked with multiplying the aforementioned shares together6. In this

6One can multiply n shares with a size n− 1 circuit. Unfortunately, this approach yields a construction
that cannot be simulated unless the CDH assumption is false. Our approach achieves zero-knowledge and
requires just a slight increase in circuit size.
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subcircuit of C̃, the value of w̃out
i,n equals that of wi in C.

In more detail, the circuit C̃ and wire embedding φ are constructed as follows. Let φ

be a vector of size #inputs(C), initially having all its entries set to ⊥. Let C̃ be a circuit

with a partitioned domain C : ∏n
i=1 F#inputs(C) → Fh and denote its inputs as w̃i,j, where

i = 1, . . . , #inputs(C) and j = 1, . . . , n. Extend C̃ with a constant gate outputting 1 and

denote the corresponding output wire by w̃0. This “dummy” gate is used to provide 1 as

a multiplicative share of certain values (and in many instances can be elided in the final

circuit).

Finally, for each non-input wire w of C (i.e., in wires(C) \ inputs(C)) taken in topological

order, do the following.

1. Set i := idx(w).

2. Letting g be the gate whose output wire is w, we distinguish between several cases

depending on g.

• g is a constant gate computing w← α

(a) Extend C̃ with a new constant gate g̃i and a corresponding output wire w̃i.

(b) Have g̃i compute w̃i ← α and have w̃i be an output of C̃.

(c) Set φ(w) := w̃i.

(d) Henceforth treat all references to w̃i,1 as references to w̃i and, for k = 2, . . . , n,

treat all references to w̃i,k as references to w̃0. Moreover, treat all references to

w̃out
i,k (k = 1, . . . , n) as references to w̃i.

• g is an addition gate computing w← ∑d
j=1 αjwj

(a) Extend C̃ with a new addition gate g̃i and a corresponding output wire w̃i.

(b) Have g̃i compute w̃i ← ∑d
j=1 αjφ(wj) and have w̃i be an output of C̃.

(c) Henceforth treat all references to w̃i,1 as references to w̃i and, for k = 2, . . . , n,

treat all references to w̃i,k as references to w̃0. Moreover, treat all references to

w̃out
i,k (k = 1, . . . , n) as references to w̃i.

(d) Set φ(w) := w̃i.

• g is a multiplication gate computing w← αwLwR

(a) Set l := idx(wL) and r := idx(wR).

(b) Extend C̃ with n new multiplication gates g̃i,1, . . . , g̃i,n and n corresponding

output wires w̃i,1, . . . , w̃i,n.

(c) Have g̃i,1 compute w̃i,1 ← α · w̃l,1 · w̃r,1 and, for k = 2, . . . , n, have g̃i,k compute

w̃i,k ← 1 · w̃l,k · w̃r,k. Have w̃i,1 be an output of C̃ and have w̃i,2, . . . , w̃i,n be internal

wires of C̃.
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(d) Henceforth treat all references to w̃out
i,1 as references to w̃i,1.

(e) Extend C̃ with 2n− 2 new multiplication gates g̃outi,2 , . . . , g̃outi,n and g̃auxi,2 , . . . , g̃auxi,n ,

as well as 2n− 2 corresponding output wires w̃out
i,2 , . . . , w̃out

i,n and w̃aux
i,2 , . . . , w̃aux

i,n .

(f) For k = 2, . . . , n have g̃auxi,k compute w̃aux
i,k ← 1 · w̃out

i,k−1 · w̃l,k and have g̃outi,k compute

w̃out
i,k ← 1 · w̃aux

i,k · w̃r,k. Have all w̃aux
i,k and w̃out

i,k be outputs of C̃.

(g) Set φ(w) := w̃out
i,n .

3. Set ~φ[i] := idx(φ(w)).

We claim that C̃, produced by the process above, is in the class CE. Because C ∈ CS,

it can be seen that all constant and addition gates of C̃ satisfy the conditions of CE (see

Section 3.3.4 for precise definitions). The same is true for multiplication gates: by induction,

every multiplication gate g has its right input R-input(g) depend on circuit inputs from a

single slot. In particular, the right inputs of g̃i,k, g̃auxi,k and g̃outi,k discussed above only depend

on circuit inputs from slot k.

Finally, wires that are not outputs of C̃ are used in computations in a verifiable

way. More precisely, only output gates g̃auxi,k and g̃outi,k can reference internal wires w̃i,k

(k = 2, . . . , n). Therefore we set mul-wit1(C̃, g̃auxi,k ) := w̃out
i,k−1, mul-wit2(C̃, g̃auxi,k ) := w̃out

l,k ,

mul-wit3(C̃, g̃auxi,k ) := w̃out
l,k−1. If wR 6∈ inputs(C), we also set mul-wit1(C̃, g̃outi,k ) := w̃aux

i,k ,

mul-wit2(C̃, g̃outi,k ) := w̃out
r,k , and mul-wit3(C̃, g̃outi,k ) := w̃out

r,k−1. Having made this choice, each

gate g that references an internal wire also satisfies

wire-poly(output(g)) · wire-poly(mul-wit3(C̃, g)) =

wire-poly(mul-wit1(C̃, g)) · wire-poly(mul-wit2(C̃, g)) ,

as required.

We also claim that our C̃ achieves correctness. That is, under multiplicative sharing of

inputs, circuit C̃ computes all outputs of C.

Note that, above, for each gate of C, we add O(n) gates and O(n) wires to C̃; hence,

size(C̃) = O(n · size(C)). Moreover, the gates of C̃ that reference w̃in, correspond to gates of

C that reference win,; if a gate g of C references an input wire win,, then the corresponding

O(n) gates of C̃ will reference a wire from each parties’ shares O(1) times; hence, size(C̃) =

O(n · size(C)) and size(C̃, i) = O(size(C)) for i = 1, . . . , n.

Finally, one can check that depthE(C̃) = n · depthS(C).

Construction of T2. On input a secure evaluation broadcast protocol ΠE = (Π, V, S) with

n parties for C̃, the transformation T2 outputs a triple ΠS = (Π′, V′, S′) that is constructed
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as follows. (Allegedly, ΠS is a secure sampling broadcast protocol with n parties for C.)

• Construction of Π′. Let Π = (S, Σ1, . . . , Σn). Construct Π′ := (S′, Σ′1, . . . , Σ′n) as follows.

The schedule S′ is

S′(t) :=


S(t) if 0 < t ≤ ROUND(Π)

{1} if t = ROUND(Π) + 1

∅ otherwise

.

Next, for i = 1, . . . , n, the strategy Σ′i, on input (xi, t) and with oracle access to the history

of messages broadcast so far, works as follows.

– If 0 < t ≤ ROUND(Π), run Σi on input (xi, t) and output its output message msgt,i.

– If t = ROUND(Π) + 1 and i = 1, do the following. Collect the encoding of the value

of every output wire of C. This can be done by using the wire embedding φ to select

values from the last message broadcast so far because, by definition (being the last

message broadcast in Π), this message contains the encoding of the value of every

output wire of C̃. Set msgt,i equal to the vector of these selected encodings and output

msgt,i.

Namely, the first ROUND(Π) rounds of Π′ coincide with the first ROUND(Π) rounds of

Π. Then, in the last round of Π′, party 1 (chosen arbitrarily) collects from the output of

Π the encodings needed to create the output for Π′.

• Construction of V′. On input a transcript tr, the verifier V′ works as follows. Let ˜msg

denote the last message in tr, and t̃r the transcript obtained by removing ˜msg from tr.

Check that V(t̃r) = 1. Then check that ˜msg equals the message obtained by using the

wire embedding φ to collect the outputs of C from t̃r’s last message.

Finally, to ensure that the adversary cannot bias the output of the sampling protocol by

an input value of zero, we perform the following check: whenever an input wire w is

used in a multiplication gate g, we check that either g’s left input is zero, or g’s output is

non-zero.

• Construction of S′. On input an adversary A and set J of corrupted parties, the simulator

S′ works as follows. (We assume that |J| > 0, for otherwise the simulation is trivial.)

1. Construct a new adversary Ã. The simulator first modifies the adversary A, which is an

adversary against the sampling protocol ΠS = (Π′, V′, S′), to an adversary Ã against

the evaluation protocol ΠE = (Π, V, S). By construction of Π′, this can be done by

designing Ã so that (i) Ã runs A and lets it interact with the outside world up to and

including round ROUND(Π) (up to this round, Π′ and Π are identical); and (ii) Ã
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simulates for A the last round (the only round at which Π′ and Π differ). The last

round can be easily simulated by Ã because, consisting merely of collecting some

values from past messages, it is a public operation on the view of A.

2. Run ΠE’s simulator on the new adversary Ã. The simulator runs S on input the new

adversary Ã and the set J of corrupted parties. When S outputs, for each i ∈ J, the

(extracted) malicious input ~σi
∗ := (σ∗i,j)

mi
j=1 for party i, the simulator forwards it to the

trusted party.

At the same time, each honest party i 6∈ J sends to the trusted party his own vector

σi := (σi,j)
mi
j=1. The trusted party, broadcasts the output f Sn,C,G(~σ

∗), where~σ∗ combines

(~σi
∗)i∈J and (~σi)i 6∈J in order of i. Note that each malicious input ~σi

∗ was not intended

as an input to the function f Sn,C,G , but instead to f EC̃,G . Though, while different, the two

functions have the same domain, and thus the trusted party’s output is well-defined.

Next, the simulator must relay to S a value for f EC̃,G , while only having access to

the trusted party’s output, f Sn,C,G(~σ
∗) := C

(
(∏n

i=1 σ∗i,1, . . . , ∏n
i=1 σ∗i,m)

)
· G, and the

(extracted) malicious inputs, (~σi
∗)i∈J . Crucially, the relayed value must be indistin-

guishable from the value that S would have seen if S had accessed the function f EC̃,G .

This particular simulation is the core of the simulator and is discussed separately in

the next step.

3. Simulation of f EC̃,G(~σ
∗). Let ~X be the distribution over Fm1 × · · · × Fmn defined as

follows: for each i ∈ J, set ~χi := ~σi
∗ (where ~σi

∗ is the extracted malicious input for

party i); for each i 6∈ J, set ~χi to be random in (F∗)mi ; output ~χ := (~χi)
n
i=1. The

simulator will relay to S a sample from the distribution

D :=
{

f EC̃,G(~χ)
∣∣∣ ~χ← ~X

}
f Sn,C,G (~χ)= f Sn,C,G (~σ

∗)
.

We now explain how the simulator can efficiently generate a sample from D, despite

the fact that the simulator does not know the honest parties’ inputs (i.e., the i-th

coordinate of~σ∗ for i 6∈ J).

By construction of C̃, f EC̃,G(~α) contains f Sn,C,G(~α) for any input~α. However, f EC̃,G(~α)

also contains additional outputs; these are the values of wires that carry partial shares

of an output of C. Our strategy is to “compute backwards” all the output wires of C̃,

starting from its output wires that are also outputs of C (because these values are the

ones we know); this strategy leverages the specific structure of the circuit C̃ and does

not apply to every circuit in CE. More precisely, we proceed as follows.
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Arbitrarily choose an honest party q ∈ {1, . . . , n} \ J and let H := {1, . . . , n} \ (J ∪
{q}). We will assign random inputs to each party i ∈ H; this, together with (extracted)

malicious input ~σi
∗, fixes inputs of n− 1 parties. Note that, together with trusted

party’s output f Sn,C,G(~σ
∗), the values for parties in J ∪ H uniquely determine the

inputs of party q and, in turn, uniquely determines f EC̃,G . Our goal is to compute the

encoded outputs f EC̃,G without having access to inputs of party q. We do so by using

f Sn,C,G(~σ
∗) and inputs of parties in J ∪ H to back-compute f EC̃,G , as described below.

Let ~B be a vector of #wires(C̃) coordinates. Letting m := #inputs(C) the values of ~B

are initialized as follows. For i ∈ J and j = 1, . . . , m, set ~B[(m− 1) · i + j] := σ∗i,j; for

i ∈ H and j = 1, . . . , m, set ~B[(m− 1) · i + j] to be an element drawn uniformly at

random from F∗r ; set all other entries of ~B to ⊥. Intuitively, ~B contains the (plain) wire

values of C̃, or ⊥, if the value is not known. Similarly, let ~E be a vector of #wires(C̃)

coordinates, initialized as follows. Consult the trusted party’s output f Sn,C,G(~σ
∗) and

for k = 1, . . . , #outputs(C) set ~E[φ(k)] := f Sn,C,G(~σ
∗)[k]; set all other entries of ~E to ⊥.

Intuitively the k-th coordinate of ~E contains the encoding of the value of the k-th wire

in C̃, or ⊥ is the value is not known.

First, we process the output of constant 1 gate g̃0 in C̃ by setting ~B[idx(w̃0)] := 1 and
~E[idx(w̃0)] := 1 · G. All other gates of C̃ arise from a gadget reduction of gates in C, so

we process all other gates of C̃ by individually handling each subcircuit of C̃. That

is, for each gate g of C, in topological order, we process the corresponding gates and

wires in C̃ as follows:

(a) Let w := output(g) be the output of g and let i := idx(w).

(b) Use calculated plain and encoded wire values in ~B and ~E to update the encoded

and plain wire values (if applicable) in the subcircuit of C̃ that corresponds to g.

We do so by referring to the different cases spelled out in the construction of C̃:

– If g is a constant gate computing w← α, set ~B[φ(i)] := α and ~E[φ(i)] := α · G.

– If g is an addition gate computing w ← ∑d
j=1 αjwj, set ~E[φ(i)] := ∑d

j=1 αj ·
~E[φ(idx(wj))].

– If g is a multiplication gate computing w← αwLwR, proceed as follows:

i. We perform all operations using the same notation as described in con-

struction of T1. That is, let l := idx(wL) and r := idx(wR). Let g̃i,1, . . . , g̃i,n;

g̃outi,2 , . . . , g̃outi,n and g̃auxi,2 , . . . , g̃auxi,n be the gates in C̃ added for handling g. Fi-

nally, let w̃i,1, . . . , w̃i,n; w̃out
i,2 , . . . , w̃out

i,n and w̃aux
i,2 , . . . , w̃aux

i,n be their respective

outputs.
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ii. Note that for 2 ≤ k ≤ n, k 6= q the simulator has filled in the val-

ues of ~B[idx(w̃l,k)] and ~B[idx(w̃r,k)] (in particular, the simulator has done

so for every multiplication gate; for addition and constant gates the

wires w̃l,k and w̃r,k refer to w̃0). So for all such k, the simulator sets
~B[idx(w̃i,k)] := ~B[idx(w̃l,k)] · ~B[idx(w̃r,k)]. The encoded values of w̃i,k’s are

not circuit outputs and, thus, are not output by the ideal functionality, so

we don’t compute them.

iii. Next, simulator computes the encoded values of w̃out
i,k ’s and w̃aux

i,k ’s in two

passes. First, it starts by encoding of w̃l,1 and uses the plain values of

w̃r,1, w̃l,2, w̃r,2, . . . , w̃r,q−1 to compute in forward direction. Next, it uses the

plain values of w̃r,n, w̃l,n, w̃r,n−1, . . . , w̃l,q+1 to compute “backwards” from

the encoding of w̃out
i,n . Note that the simulator knows the encoding of w̃out

i,n

as this value is part of the trusted party’s output.

More precisely, if q > 1, the simulator computes ~E[idx(w̃out
i,1 )] := ~E[idx(w̃out

l,1 )] ·
~B[idx(w̃r,1)] and for k = 2, . . . , q− 1 computes ~E[idx(w̃aux

i,k )] := ~E[idx(w̃out
i,k−1)] ·

~B[idx(w̃l,k)] and ~E[idx(w̃out
i,k )] := ~E[idx(w̃aux

i,k )] · ~B[idx(w̃r,k)]. Similarly for

k = n, . . . , q+ 1, the simulator computes ~E[idx(w̃aux
i,k )] := ~E[idx(w̃out

i,k )]/~B[idx(w̃r,k)]

and ~E[idx(w̃out
i,k−1)] := ~E[idx(w̃aux

i,k )]/~B[idx(w̃l,k)].

iv. If q = 1, the simulator has handled all output wires of C̃ that correspond

to g in C. If q > 1, the simulator has handled all wires except w̃aux
i,q , so it

sets ~E[idx(w̃aux
i,q )] := ~E[idx(w̃out

l,1 )] ·
(

∏
q−1
k=1

~B[idx(w̃r,k)]
)
· α.

4. Extend the output of S. Extend t̃r with an additional message, f Sn,C,G(~σ
∗), and denote

the result by tr. This last message reflects the additional round present in Π′ (as

compared to Π), and its goal is merely to re-format the output of the protocol. Also,

since extending t̃r to tr does not require additional randomness, we can set r := r̃.

5. Output. Output tr (the transcript), (~σi)i∈J (the inputs of the corrupted parties), and r

(the adversary’s randomness).

3.11 Proof of Lemma 3.5.3

We prove Lemma 3.5.3. Specifically, first we describe the construction of ΠE = (Π, V, S)

by describing, for every positive integer n and circuit C : F
m1
r × · · · ×F

mn
r → Fh

r in CE, the

multi-party broadcast protocol Πn,C, the verifier Vn,C, and the simulator Sn,C; afterwards,

we explain why the construction of ΠE works.
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Below, we use the following cryptographic ingredients: a commitment scheme COMM

(see Section 3.3.2), and three NIZKs (see Section 3.3.3), namely, NIZKRA for the NP re-

lation RA, NIZKRB,inp for RB,inp, and NIZKRB,priv for RB,priv; these three relations are de-

fined in Figure 3.4. Parties have access to a common random string crs that we parse as

(crs?, crsRA , crsRB,inp , crsRB,inp) where crs? is a common random string for COMM, crsRA for

NIZKRA , crsRB,inp for NIZKRB,inp and crsRB,priv for NIZKRB,priv .

Construction of Πn,C. The n-party broadcast protocol Πn,C is a tuple (S, Σ1, . . . , Σn) that

is constructed as follows. The schedule S is

S(t) :=

{1, . . . , n} if t = 1

{i | ∃w ∈ outputs(C) s.t. depthE(w) = t− 1 and i ∈ ds(w)} if 1 < t ≤ depthE(C) + 1

{1} if t = depthE(C) + 2

∅ otherwise

.

Next, for i = 1, . . . , n, the strategy Σi, on input (xi, t) and with oracle access to the history

of messages broadcast so far, works as follows.

• If t = 1, do the following.

1. Parse inputs(C, i) as {wi,j}mi
j=1 and xi as (σi,j)

mi
j=1; each σi,j lies in Fr and represents the

value of wire wi,j.

2. Set Ui :=
(
(wi,j, σi,j)

)mi
j=1. The protocol will maintain the invariant that Ui contains all

private values known to the party i.

3. For j = 1, . . . , mi:

(a) sample the commitment and randomness (cmi,j, cri,j)← COMM.G(crs?, σi,j);

(b) construct the instance xi,j := (crs?, cmi,j) and witness wi,j := (σi,j, cri,j);

(c) compute the NIZK proof πi,j := NIZKRA .P(crsRA , xi,j,wi,j).

4. Store, for later use, the list Ui and commitment randomness (cri,1, . . . , cri,mi).

5. Output the message msgt,i := (cmi,1, πi,1, . . . , cmi,mi , πi,mi).

• If 1 < t ≤ depthE(C) + 1, do the following. Define the set of wires

Wt,i :=

{
w ∈ outputs(C)

∣∣∣∣∣ depthE(w) = t− 1 ∧
i ∈ ds(w)

}
. (3.1)

If Wt,i is empty, return an empty list as the party’s output for the round (since party i

has no gates to process during this round). Otherwise, initialize the message msgt,i to be

an empty list and, for each wire w ∈Wt,i taken in topological order from inputs towards
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outputs, perform the following steps.

1. Let g be the gate in gates(C) whose output wire is w.

2. If type(g) = const:

– Say that the gate g computes w← α for α ∈ Fr.

– Compute the G-elementR := α · G;R encodes the value of the output wire w.

– Append (w, α) to Ui.

– Append (w,R,⊥) to msgt,i.

3. If type(g) = add:

– Say that the gate g computes w← ∑d
j=1 αjwj for α1, . . . , αd ∈ Fr.

– For j = 1, . . . , d, consult the history of messages broadcast so far (or previous

iterations of this loop) to obtain a tuple (wj,Pj, πj); Pj encodes the value of the j-th

input wire wj and πj is a NIZK proof attesting to this.

– Compute the G-element R := ∑d
j=1(αj · Pj); R encodes the value of the output

wire w.

– If Ui contains pairs (wj, σj) for all j = 1, . . . , d, then compute σ := ∑d
j=1 αjσj and

append (w, σ) to Ui.

– Append (w,R,⊥) to msgt,i.

4. If type(g) = mul:

– Say that the gate g computes w← αwLwR for α ∈ Fr.

– Consult the history of messages broadcast so far (or previous iterations of this loop)

to obtain a tuple (wL,PL, πL); PL encodes the value of the left input wire wL and πL

is a NIZK proof attesting to this.

– Consult Ui to obtain a pair (wR, σR); the Fr-element σR is the value of the right input

wire wR. (This can always be done, because C ∈ CE and so wR depends only on

inputs of party i.)

– If Ui contains a pair (wL, σL), then compute σ := ασLσR and append (w, σ) to Ui.

– Compute the G-elementR := ασR · PL;R encodes the value of the output wire w.

– If wR ∈ inputs(C):

(a) let j′ be the index such that wR is the j′-th wire in inputs(C, i);

(b) set cm := cmi,j′ , cr := cri,j′ , α := α, P := PL;

(c) construct the instance x := (crs?, cm,R,P , α) and witness w := (σ, cr); the pair

(x,w) belongs toRB,inp;
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(d) compute the NIZK proof π := NIZKRB,inp .P(crsRB,inp , x,w).

– If wR 6∈ inputs(C):

(a) consult the history of messages broadcast so far (or previous iterations of

this loop) to obtain triples (mul-wit1(C, g),P , πP ), (mul-wit2(C, g),Q1, πQ,1)

and (mul-wit3(C, g),Q2, πQ,2); this can be done because each of the wires

mul-wit1(C, g), mul-wit2(C, g) and mul-wit1(C, g) are circuit outputs, due to

topological ordering, that were processed before w;

(b) consult Ui to obtain pairs (mul-wit2(C, g), σ1) and (mul-wit3(C, g), σ2); this can

be done because C ∈ CE and so mul-wit2(C, g) and mul-wit3(C, g) depend only

on inputs of party i;

(c) construct the instance x := (R,P ,Q1,Q2, α) and witness w := (σ1, σ2); the

pair (x,w) belongs toRB,priv;

(d) compute the NIZK proof π := NIZKRB,priv .P(crsRB,priv , x,w).

– Append (w,R, π) to msgt,i.

Output the message msgt,i.

• If t = 2 + depthE(C) and i = 1, do the following.

1. Parse outputs(C) as {wout,j}h
j=1.

2. Consult the history of messages broadcast so far to collect the encoding of every

output of C, i.e., to collect the triples
(
(wj,Rj, πj)

)h
j=1 with wj = wout,j.

3. Output the message msgt,i := (Rj)
h
j=1.

Construction of Vn,C. On input a transcript tr, the verifier Vn,C first uses Πn,C’s schedule

to parse tr as a sequence of messages msgt,i where msgt,i is the t-th message broadcast by

party i. Here, t ranges from 1 to 2 + depthE(C) and i ranges from 1 to n; if tr cannot be

parsed in this way, Vn,C rejects. Next, the verifier performs the following checks.

• Check that parties have collectively committed to a valid input. For i = 1, . . . , n, check

that msg1,i equals a vector of mi commitments and NIZK proofs, which we denote by

(cmi,1, πi,1, . . . , cmi,mi , πi,mi), and that, for j = 1, . . . , mi, NIZKRA .V(crsRA , (crs?, cmi,j), πi,j) =

1.

• Check that each gate in C is correctly evaluated. For i = 1, . . . , n and t = 2, . . . , 1 + depthE(C)

do the following. First define the set Wt,i as in Equation 3.1. Then check that msgt,i

equals a list of |Wt,i| triples (wt,i,j,Rt,i,j, πt,i,j), where each wt,i,j is a wire of C, eachRt,i,j

is an element of G, and each πt,i,j is a NIZK proof or ⊥; also, check that {wt,i,j}j = Wt,i.

Finally, check that for each j the encoding of wt,i,j was correctly computed. There are

four cases to consider:
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– Case 1: wt,i,j is an output wire of a constant gate wt,i,j ← α. Check thatRt,i,j = α · G.

– Case 2: wt,i,j is an output wire of an addition gate wt,i,j ← ∑d
k=1 αkwk. Consult the

transcript to obtain triples (wk,Pk, πk) for k = 1, . . . , d, and then check that Rt,i,j =

∑d
k=1 αk · Pk.

– Case 3: wt,i,j is an output wire of a multiplication gate wt,i,j ← αwLwR and wR ∈
inputs(C). Check that NIZKRB,inp .V(crsRB,inp , xt,i,j, πt,i,j) = 1, where xt,i,j := (crs?, cm,R,P , α)

is an instance for the NP relationRB,inp that is constructed (analogously to Step 4 above

in Σi’s description), as follows: consult the transcript to obtain a triple (wL,PL, πL)

and set R := Rt,i,j, P := PL, and α := α; then, letting j′ be the index such that wR is

the j′-th wire in inputs(C, i), set cm := cmi,j′ .

– Case 4: wt,i,j is an output wire of a multiplication gate wt,i,j ← αwLwR and wR 6∈
inputs(C). Check that NIZKRB,priv .V(crsRB,priv , xt,i,j, πt,i,j) = 1, where xt,i,j := (R,P ,Q1,Q2, α)

is an instance for the NP relationRB,priv that is constructed (analogously to Step 4 above

in Σi’s description), by consulting the transcript to obtain the triples (mul-wit1(C, w),P , πP ),

(mul-wit2(C, w),Q1, πQ,1), and (mul-wit3(C, g),Q2, πQ,2).

Moreover, check thatQ2 does not equal the identity element of the group G; this check

ensures that the value of the wire mul-wit3(C, g) encoded in Q2 does not equal zero.

Taken together, all such checks ensure that C is evaluated on a some valid input; and,

conversely, an honest protocol execution on any valid input will pass these tests.

• Check that party 1 collected all the encodings of outputs. Collect, among the aforementioned

triples of the form (w,R, π), encodings of the values of output wires of C, and check that

the vector whose entries equals these encodings matches the message msg2+depthE(C),1.

Construction of Sn,C. On input an adversary A and set J of corrupted parties, the

simulator Sn,C works as follows.

1. Initialization. The simulator initializes an empty transcript tr; over the course of running

the adversary A with randomness r, the simulator will add to tr both simulated mes-

sages (on behalf of honest parties) and messages output by A (on behalf of corrupted

parties). The simulator samples a common random string crs? for COMM and com-

mon random strings for the three NIZKs, with an extraction trapdoor for NIZKRA and

simulation trapdoors for NIZKRB,inp and NIZKRB,priv , i.e., (crsext
RA

, trapext
RA

) ← NIZKRA .E1,

(crssim
RB,inp

, trapsim
RB,inp

)← NIZKRB,inp .S1 and (crssim
RB,priv

, trapsim
RB,priv

)← NIZKRB,priv .S1. The com-

mon random string shown to A is crs := (crs?, crsext
RA

, crssim
RB,inp

, crssim
RB,priv

). The simulator

samples a random string r for the adversary A, and then runs A, on inputs (~σi)i∈J and

with randomness r, until A asks for the first round’s messages of the honest parties.
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2. Simulation of the first round. The adversary A expects, for each honest party i 6∈ J, a

message msg1,i. The simulator, for each honest party i 6∈ J, does the following. For

j = 1, . . . , mi, pick the dummy value ρi,j = 0 and sample commitment and randomness

(cmi,j, cri,j)← COMM.G(crs?, ρi,j), construct the instance xi,j := (crs?, cmi,j) and witness

wi,j := (ρi,j, cri,j), and compute the NIZK proof πi,j := NIZKRA .P(crsext
RA

, xi,j,wi,j); then

answer with the message msg1,i := (cmi,1, πi,1, . . . , cmi,mi , πi,mi).

The adversary outputs, for each i ∈ J, a message msg1,i of his choice. The simulator

adds all these messages (the messages that are simulated and those that are output by

the adversary) to the transcript tr.

3. Invocation of the trusted party. The simulator, for each corrupted party i ∈ J, does

the following. For j = 1, . . . , mi, extract σ∗i,j, the j-th input chosen by the adversary

for party i, from the commitment cmi,j and proof πi,j in msg1,i, by computing σ∗i,j :=

NIZKRA .E2(crsext
RA

, trapext
RA

, cmi,j, πi,j); then send to the trusted party the vector ~σi
∗ :=

(σ∗i,j)
mi
j=1 as the private input of party i.

At the same time, each honest party i 6∈ J sends to the trusted party his own vector

σi := (σi,j)
mi
j=1. The trusted party, broadcasts the output f EC,G(~σ

∗) where ~σ∗ combines

(~σi
∗)i∈J and (~σi)i 6∈J in order of i. If f EC,G(~σ

∗) = ⊥, then halt and output the special

symbol abort (this corresponds to the case~σ∗ 6∈ valid-inputs(C)); else it is the case that

f EC,G(~σ
∗) := C(~σ∗) · G, and the simulator continues as below.

If at any point of the execution the simulator can’t perform an operation, it halts and

outputs the special symbol abort. This represents the case where, in the real world, the

adversary produces syntactically invalid messages.

4. Parsing the trusted party’s output. The simulator re-organizes f EC,G(~σ
∗) into a data struc-

ture that allows for easy lookup of information in the next step: initialize E to be an

empty list; then, for each output wire w of C, add to E the pair (w,R) whereR encodes

w’s value (and can be found in f EC,G(~σ
∗) by definition).

5. Simulation of the rounds 2 through 1 + depthE(C). For t ranging from 2 to 1 + depthE(C),

the adversary expects, for each honest party i 6∈ J, a message msgt,i. The simulator, for

each honest party i 6∈ J, does the following. Define Wt,i as in Equation 3.1. Initialize

msgt,i as an empty list and, for each output wire w ∈ Wt,i taken in topological order,

perform the following steps, depending on whether g is a constant gate, addition gate,

or multiplication gate.
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• If type(g) = const:

(a) Say that the gate g computes w← α for α ∈ Fr.

(b) Compute the G-elementR := α · G.

(c) Append (w,R,⊥) to msgt,i.

• If type(g) = add:

(a) Say that the gate g computes w← ∑d
j=1 αjwj for α1, . . . , αd ∈ Fr.

(b) For j = 1, . . . , d, consult E to obtain the G-element Rj that encodes wj’s value.

Note that C ∈ CE implies that each wj is in outputs(C) so that its value can be

found in E.

(c) Compute the G-elementR := ∑d
j=1 αjRj.

(d) Append (w,R,⊥) to msgt,i.

• If type(g) = mul:

(a) Say that the gate g computes w← αwLwR for α ∈ Fr.

(b) If wR ∈ inputs(C):

– Consult E to obtain the G-element PL that encodes wL’s value. Note that

C ∈ CE implies that wL is a circuit output, thus its value can be found in E.

– Consult E to obtain the G-elementR that encodes w’s value.

– Letting j′ be the index such that wR is the j′-th wire in inputs(C, i), set cm :=

cmi,j′ (where cmi,j′ is in msg1,i), α := α and P := PL.

– Construct the instance x := (crs, cm,R,P , α).

– Compute the NIZK proof π := NIZKRB,inp .S2(crssim
RB,inp

, trapsim
RB,inp

, x).

(c) If wR 6∈ inputs(C):

– Consult E to obtain the G-elements P , Q1, Q2 that encode the values of

mul-wit1(C, g), mul-wit2(C, g) and mul-wit3(C, g), respectively. This can be done

because each of the wires mul-wit1(C, g), mul-wit2(C, g) and mul-wit1(C, g) are

circuit outputs, due to topological ordering, were processed before w.

– Consult E to obtain the G-elementR that encodes w’s value.

– Construct the instance x := (R,P ,Q1,Q2, α).

– Compute the NIZK proof π := NIZKRB,priv .S2(crssim
RB,priv

, trapsim
RB,priv

, x).

(d) Append (w,R, π) to msgt,i.

Answer the adversary with the message msgt,i.

The adversary outputs, for each i ∈ J, a message msgt,i of his choice. The simulator adds

all the round-t messages (the messages that are simulated and those that are output by
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the adversary) to the transcript tr.

6. Simulation of the last round. We distinguish between two cases:

• If 1 6∈ J, the adversary expects a message msg2+depthE(C),1; the simulator provides

msg2+depthE(C),1 := f EC,G(~σ
∗).

• If 1 ∈ J, the adversary does not expect any messages and instead outputs a message

msg2+depthE(C),1.

In either case, the simulator adds the last-round message msg2+depthE(C),1 to the tran-

script tr.

7. Verification of the transcript. Check that V(tr) = 1; if not, then halt and output the special

symbol abort. This represents the case where, in the real world, the adversary has

produced syntactically valid messages that, however, do not pass the semantic checks,

e.g. invalid NIZK proofs, etc. Of course, all messages produced by the simulator on

the behalf of the honest parties are syntactically and semantically valid and do not by

themselves make V reject.

8. Output. Output tr (the transcript), (~σi)i∈J (the inputs of the corrupted parties), and r

(the adversary’s randomness).

3.12 Examples of circuits underlying generators

As discussed in Section 3.1.2, the generator G of essentially all known (preprocessing)

zk-SNARK constructions follows the same computation pattern. To generate the public

parameters pp for a given NP relationR, G first constructs an Fr-arithmetic circuit C : Fm
r →

Fh
r (which is somehow related toR), then samples~α in Fm

r at random, and finally outputs

pp := C(~α) · G (where G generates a certain group of order r). Different zk-SNARK

constructions differ in (i) which NP relationsR are “natively” supported, and (ii) how the

circuit C is obtained fromR.

Below, we give two examples of how the generator of a known zk-SNARK construction

can be cast in the above paradigm and, moreover, the resulting circuit C lies in the class CS.

Throughout, we denote by F[z] the ring of univariate polynomials over F, and by F≤d[z]

the subring of polynomials of degree ≤ d.
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3.12.1 Example for a QAP-based zk-SNARK

We describe how to cast the generator of [PGHR13]’s zk-SNARK as computing the en-

coding of a random evaluation of a circuit C that lies in CS. More precisely, we consider

[BCTV14c]’s zk-SNARK, which modifies [PGHR13]’s.

Supported NP relations. This zk-SNARK supports arithmetic circuit satisfiability (see

Footnote 5), i.e., relations of the form RD = {(~x, ~w) ∈ Fn
r × Fh

r : D(~x, ~w) = 0`} where

D : Fn
r ×Fh

r → F`
r is an Fr-arithmetic circuit.

QAPs. The construction is based on quadratic arithmetic programs (QAP) [GGPR13]: a QAP

of size m and degree d over F is a tuple (~A,~B, ~C, Z), where ~A,~B, ~C are three vectors, each of

m + 1 polynomials in F≤d−1[z], and Z ∈ F[z] has degree exactly d. As shown in [GGPR13],

each relation RD can be reduced to a certain relation R(~A,~B,~C,Z), which captures “QAP

satisfiability”, by computing (~A,~B, ~C, Z) := GetQAP(D) for a suitable function GetQAP; if

D has Nw wires and Ng gates, then the resulting QAP has size m = Nw and degree d ≈ Ng.

The parameter generator. On input an Fr-arithmetic circuit D : Fn
r × Fh

r → F`
r , the

generator does the following.
1. Compute (~A,~B, ~C, Z) := GetQAP(D), and denote by m and d the QAP’s size and degree;

then construct an Fr-arithmetic circuit C : F8
r → Fd+7m+n+22

r such that C(τ, ρA, ρB, αA, αB, αC, β, γ)

computes the following outputs:(
1, τ, . . . , τd,

A0(τ)ρA, . . . , Am(τ)ρA, Z(τ)ρA,

A0(τ)ρAαA, . . . , Am(τ)ρAαA, Z(τ)ρAαA,

B0(τ)ρB, . . . , Bm(τ)ρB, Z(τ)ρB,

B0(τ)ρBαB, . . . , Bm(τ)ρBαB, Z(τ)ρBαB,

C0(τ)ρAρB, . . . , Cm(τ)ρAρB, Z(τ)ρAρB,

C0(τ)ρAρBαC, . . . , Cm(τ)ρAρBαC, Z(τ)ρAρBαC,

(A0(τ)ρA + B0(τ)ρB + C0(τ)ρAρB)β, . . . ,

(Am(τ)ρA + Bm(τ)ρB + Cm(τ)ρAρB)β,

(Z(τ)ρA + Z(τ)ρB + Z(τ)ρAρB)β,

αA, αB, αC, γ, γβ, Z(τ)ρAρB, A0(τ)ρA, . . . , An(τ)ρA

)
.

2. Sample~α in F8
r at random.

3. Compute pp := C(~α) · G.
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4. Output pp.7

Fitting in the class CS. We explain how to construct the above circuit C so to belong

to the class CS. We ensure the following: each gate of C is either a constant gate, or an

addition gate that combines outputs of previous gates, or a multiplication gate whose two

inputs are an output of a previous gate and a circuit input; these conditions satisfy the

requirements of the class CS (see Section 3.3.4). Concretely, the outputs of C are computed

as follows:

• The outputs (1, τ, . . . , τd) are computed by a d-gate subcircuit that multiplies 1 by τ to

obtain the output τ, then multiplies τ by τ to obtain the output τ2, then multiples τ2 by

τ to obtain the output τ3, and so on until the output τd.

• We invoke the results of Section 3.12.3 to obtain a subcircuit in CS that maps 1, τ, . . . , τd

to L1(τ), . . . , Ld(τ), where L1, . . . , Ld are the Lagrange interpolation polynomials for

certain suitably chosen evaluation points δ1, . . . , δd ∈ Fr.

• For i = 0, . . . , m, each of the values Ai(τ), Bi(τ) and Ci(τ) is a linear combination of

L1(τ), . . . , Ld(τ) and can be computed by an addition gate. Note that these values are

not part of the circuit output, however producing them does not produce non-public

information. Indeed, each each Ai(τ), Bi(τ), and Ci(τ) is also a linear combination of

1, τ, . . . , τd so can be computed publicly from the circuit output. The only reason for

invoking the results of Section 3.12.3 is efficiency: the terms Ai(τ), Bi(τ), and Ci(τ) are

not sparse in the monomial basis (1, τ, . . . , τd), but they are sparse in the Lagrange basis

(L1(τ), . . . , Ld(τ)).

• For i = 0, . . . , m, the output Ai(τ)ρA is computed by a multiplication gate whose inputs

are the previously computed value Ai(τ) and the input ρA. The same applies for the

outputs Bi(τ)ρB. Similarly, the output Ai(τ)ρAαA is computed by a multiplication gate

whose inputs are the previously computed value Ai(τ)ρA and the input αA. The same

applies for the outputs Bi(τ)ρBαB.

• The output Z(τ) is the degree d polynomial that vanishes on the set {δ1, . . . , δd}; it

is sparse in (1, τ, . . . , τd), and can thus be computed by an addition gate that takes a

suitable linear combination of these. As before, producing this auxiliary value does not

produce any non-public information. The terms Z(τ)ρA and Z(τ)ρB are computed by

multiplication gates whose inputs are the output Z(τ) and the input ρA, respectively,

ρB. Similarly, the terms Z(τ)ρAρB, Z(τ)ρAαA, Z(τ)ρBαB are computed by multiplication

7The first d+ 7m+ 15 elements in pp form the proving key pk, while the remaining n+ 7 form the verification
key vk.
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gates whose inputs are the outputs Z(τ)ρA or, respectively, Z(τ)ρB and the correspond-

ing inputs ρB, αA and αB. Finally, Z(τ)ρAρBαC is computed by a multiplication gate

whose inputs are the output Z(τ)ρAρB and the input αC.

• For i = 0, . . . , m, the output Ci(τ)ρAρBαC is computed by a multiplication gate whose

inputs are the output Ci(τ)ρAρB and the input αC.

• For i = 0, . . . , m, the auxiliary value Ai(τ)ρA + Bi(τ)ρB + Ci(τ)ρAρB is computed as

the sum of the three outputs Ai(τ)ρA, Bi(τ)ρB, and Ci(τ)ρAρB, therefore this auxiliary

value can be computed publicly. For i = 0, . . . , m, the output (Ai(τ)ρA + Bi(τ)ρB +

Ci(τ)ρAρB)β is computed by a multiplication gate whose inputs are the public value

Ai(τ)ρA + Bi(τ)ρB +Ci(τ)ρAρB and the input β. We take the same approach to compute

(Z(τ)ρA + Z(τ)ρB + Z(τ)ρAρB)β.

• Each of the outputs αA,αB,αC, and γ are computed by a multiplication gate whose inputs

are the constant 1 and the respective input. Finally, the term γβ is computed by a

multiplication gate whose input is the previously computed output γ and the input β.

Our implementation realizes the above approach (and, in particular, we have ensured that

the overall circuit lies in CS).

As an important technical challenge, the outputs C0(τ)ρAρB, . . . , Cm(τ)ρAρB are not

part of the CRS for the [PGHR13] proof system, and thus the original security proof does

not apply. However, one can still prove the extended proof system secure, and we do so in

Appendix A.

3.12.2 Example for a SSP-based zk-SNARK

We explain how the generator of [DFGK14]’s zk-SNARK can be cast as computing the

encoding of a random evaluation of a certain circuit C that lies in CS.

Supported NP relations. This zk-SNARK supports boolean circuit satisfiability (see

Footnote 5), i.e., relations RD = {(~x, ~w) ∈ {0, 1}n × {0, 1}h : D(~x, ~w) = 0`} where

D : {0, 1}n × {0, 1}h → {0, 1}` is a boolean circuit.

SSPs. The construction is based on square span programs (SSP) [DFGK14]: a SSP of size

m and degree d over F is a tuple (~A, Z), where ~A is a vector of m + 1 polynomials in

F≤d−1[z] and Z ∈ F[z] has degree exactly d. As shown in [DFGK14], each relationRD can

be reduced to a certain relationR(~A,Z), which captures “SSP satisfiability”, by computing

(~A, Z) := GetSSP(D) for a suitable function GetSSP; if D has Nw wires and Ng gates, then

the resulting SSP has size m = Nw and degree d ≈ Nw + Ng.
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The parameter generator. On input a boolean circuit D : {0, 1}n × {0, 1}h → {0, 1}`, the

generator does the following.
1. Compute (~A,~B, ~C, Z) := GetSSP(D), and denote by m and d the SSP’s size and de-

gree; then construct an Fr-arithmetic circuit C : F3
r → Fd+2m+n+9

r such that C(τ, β, γ)

computes the following outputs:(
1, τ, . . . , τd,

A0(τ), . . . , Am(τ), Z(τ),

A0(τ)β, . . . , Am(τ)β, Z(τ)β,

γ, γβ, Z(τ), A0(τ), . . . , An(τ)
)

.

2. Sample~α in F3
r at random.

3. Compute pp := C(~α) · G.

4. Output pp.8

Fitting in the class CS. We explain how to construct the above circuit C so to belong

to the class CS. We ensure the following: each gate of C is either a constant gate, or an

addition gate that combines outputs of previous gates, or a multiplication gate whose two

inputs are an output of a previous gate and a circuit input; these conditions satisfy the

requirements of the class CS (see Section 3.3.4). Concretely, the outputs of C are computed

as follows:

• The outputs (1, τ, . . . , τd) are computed by a d-gate subcircuit that multiplies 1 by τ to

obtain the output τ, then multiplies τ by τ to obtain the output τ2, then multiples τ2 by

τ to obtain the output τ3, and so on until the output τd.

• We invoke the results of Section 3.12.3 to obtain a subcircuit in CS that maps 1, τ, . . . , τd

to L1(τ), . . . , Ld(τ), where L1, . . . , Ld are the Lagrange interpolation polynomials for

certain suitably chosen evaluation points δ1, . . . , δd ∈ Fr.

• For i = 0, . . . , m, the output Ai(τ) is a linear combination of L1(τ), . . . , Ld(τ) and can be

computed by an addition gate. (We recall that each Ai(τ) is also a linear combination of

1, τ, . . . , τd, but it is not “sparse” in this basis.)

• The output Z(τ) is the degree d polynomial that vanishes on the set {δ1, . . . , δd}; it

is sparse in (1, τ, . . . , τd), and can thus be computed by an addition gate that takes a

suitable linear combination of these.

• For i = 0, . . . , m, the output Ai(τ)β is computed by a multiplication gate whose inputs

8The first d + 2m + 5 elements in pp form the proving key pk, while the remaining n + 4 form the verification
key vk.
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are the previously computed output Ai(τ) and the input β. The same applies for

obtaining Z(τ)β from the output Z(τ) and the input β.

• The outputs γ and γβ are computed via two multiplication gates: the first multiplies the

constant 1 by the input γ, the second multiplies γ (the output of the previous gate) by

the input β.

Our implementation realizes the above approach (and, in particular, we have verified that

the overall circuit lies in CS).

3.12.3 Circuits for polynomial interpolation

The two generators of two zk-SNARK constructions from Section 3.12.1 and Section 3.12.2

require computing a solution to a certain polynomial interpolation problem. The subcircuit

computing performing polynomial interpolation is not straight-forward and the concrete

choice of the subcircuit greatly affects the S-depth and size of the generator circuit.

This subsection is organized as follows. First, we describe the concrete interpolation

problem, required for the both circuit generators mentioned above. Next, we argue that

the core of the problem is computing a certain vector of Lagrange coefficients and provide

two solutions for computing them. Finally, we summarize the cost characteristics of the

two solutions in Figure 3.7.

The polynomial interpolation problem

The zk-SNARK generators in Section 3.12.1 and Section 3.12.2 require solving the following

polynomial interpolation problem. The evaluation problem fixes a set W of evaluation

points δ1, . . . , δd ∈ Fr and m · d values yi,j ∈ Fr of m target polynomials Pi(z). Each

polynomial Pi(z) has degree d− 1 and satisfies Pi(δj) = yi,j for j = 1, . . . , d. By the Lagrange

interpolation theorem each Pi(z) is uniquely determined. The input to the problem is an

interpolation point τ ∈ Fr and the output is m interpolated values (P1(τ), . . . , Pm(τ)).

To summarize, we are given m polynomials P1, . . . , Pm, specified by their values at d

evaluation points common to all polynomials, and seek to obtain a circuit in CS that, on

input τ, outputs Pi(τ) (1 ≤ i ≤ m). This problem is solved by using Lagrange interpolation.

Let Lj(z) be the j-th Lagrange interpolation polynomial, defined as the unique polynomial

of degree at most d − 1 satisfying Lj(δj) = 1 and Lj(δi) = 0 for all i 6= j. Then each

polynomial Pi can be expressed as a weighted sum of Lagrange polynomials Lj as follows:

Pi(z) = ∑d
j=1 yi,j · Lj(z).
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Thus, to evaluate all Pi(τ) it suffices to compute all Lagrange interpolants Lj(τ). Each

Lj(z) has an explicit form: Lj(z) := ∏d
i=1
i 6=j

(z− δi)/(δj − δi). However, a straightforward

evaluation of a single interpolant Lj(τ) requires a size O(d) circuit and obtaining all

d interpolants requires size O(d2) circuit. Alternatively, one could compute L1(τ) and

calculate the remaining interpolants as follows: Lj+1(z) = Lj(z) · (z− δj)/(z− δj+1) · β j,

where β j ∈ Fr is a constant.9 However, this approach cannot be realized in CS: the class of

supported circuits can’t compute multiplicative inverses.

Solving polynomial interpolation problem using FFTs

We use the fast Fourier transform (FFT) to efficiently compute the Lagrange interpolation

polynomials {Lj(τ)}d
j=1 via a circuit in CS. Let P(z) := ∑d−1

i=0 ai · zi be a degree d − 1

polynomial with coefficients in Fr, and let W = {δ1, . . . , δd} be a subset of Fr. The (fast)

Fourier transform computes evaluations of P on entire set W; we denote the vector of such

evaluations as FFTW (a0, . . . , ad−1): FFTW (a0, . . . , ad−1) := (P(δ1), . . . , P(δd−1)).

The fast Fourier transform is particularly efficient when the set W has multiplicative

structure. In the zk-SNARK applications the set W is chosen to be the set of d-th roots of

unity where d is a power of 2. More precisely, let ω be the d-th root of unity with ωd = 1

and ωi 6= 1 for 1 ≤ i < d. We set δi = ωi and then W = {1, ω, ω2, . . . , ωd−1}. For con-

venience we will extend the notation of FFTω (a0, . . . , ad−1) to mean FFTW (a0, . . . , ad−1)

with W defined as W := {1, ω, ω2, . . . , ωd−1}.
We note that for the particular choice of W, the fast Fourier transform and the interpo-

lation problem described above are related as follows:

FFTW (L1(τ), . . . , Ld(τ)) = (1, τ, τ2, . . . , τd−1) .

Indeed, the j-th element of FFTW (L1(τ), . . . , Ld(τ)) equals ∑d−1
i=0 Li+1(τ)ω

ij. Let Q(z) :=

zj; the values of Q, when evaluated on W are Q(ωi) = ωij (1 ≤ i ≤ d). Therefore, Q(τ)

can be interpolated using Lagrange polynomials as follows: τ j = Q(τ) = ∑d−1
i=0 Li+1(τ)ω

ij.

Note that this exactly matches the expression before.

We conclude that the Lagrange interpolants Lj(τ) can be computed by taking the inverse

Fourier transform of the vector (1, τ, τ2, . . . , τd−1). It is well known that the inverse of

FFTω (·) is 1
d FFTω−1 (·), therefore in the following discussion we will focus on computing

9More precisely, we have β j = ∏d
i=1
i 6=j

(δj − δi)/ ∏d
i=1

i 6=j+1
(δj+1 − δi).
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the (forward) FFT: the circuits for computing the inverse FFT are just slight variations of

their forward versions.

A constant depth FFT circuit

The first FFT circuit we describe is the standard “butterfly” circuit, as covered in standard

algorithms textbooks [CLRS01]. Recall that FFT evaluates a polynomial P(z) := ∑d−1
i=0 ai · zi

on a set of points W. We express P as the sum of its even and odd components: P(z) :=

Peven(z2) + z · Podd(z2), where Peven(z) := ∑d/2−1
i=0 a2i · zi and Podd(z) := ∑d/2−1

i=0 a2i+1 · zi.

Note that ω2i = ω2(i+d/2) and ωd/2 = −1, therefore the even-odd decomposition yields

the following evaluation strategy:

FFTω (a0, a1, . . . , ad−1) =
(

P(ωi)
)d−1

i=0
=
(

Peven(ω2i) + ωiPodd(ω2i)
)d−1

i=0

= (α0 + ω0β0, . . . , αd−1 + ωd−1βd−1,

α0 −ω0β0, . . . , αd−1 −ωd−1βd−1) ,

where~α := FFTω2 (a0, a2, . . . , ad−2) and ~β := FFTω2 (a1, a3, . . . , ad−1).

In more detail, we compute the FFT by a circuit of log d layers. The last layer computes

FFTω (~a) by having d addition gates of the form form αi ± ωiβi. Each preceding layer

implements the corresponding recursive evaluation of half-size FFTs, whereas the first

layer refers to the input vector. Overall the circuit requires d · log d addition gates; as the

circuit does not contain any multiplication gates its S-depth is just 1. We remark that each

intermediate value computed by this circuit is a linear combination of the terms a0, . . . ,

ad−1, therefore the use of this circuit does not produce any auxiliary outputs that can not

be publicly computed from its inputs.

A linear size FFT circuit

The size of the “butterfly” FFT circuit is quasi-linear. For certain applications the log d

factor is significant, so we describe an alternative FFT circuit of linear size. This reduction

in size comes as a trade-off: S-depth of our circuit is logarithmic.

The “butterfly” FFT circuit works for any input~a; the circuit we now describe uses,

in an essential way, the fact that Lagrange coefficients are computed as an inverse FFT

of the geometric progression
(
1, τ, τ2, . . . , τd−1). That is, in Lagrange setting ai = τi, so

P(z) := ∑d
i=0(τz)i. Moreover, Podd(z) = ∑d

i=0 τ2i+1 · zi = τ · ∑d
i=0 τ2i · zi = τ · Peven(z).
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Constant depth circuit of
Section 3.12.3

Linear size circuit of
Section 3.12.3

depthS(C) 1 log d
#gates(C) d · (log d + 1) 5d− 4
#const-gates(C) 1 1
#add-gates(C) d · log d 2d− 2
#mul-gates(C) d− 1 3d− 3
#wires(C) 3(log d + 1)d− 1 3(log d + 1)d− 1

Figure 3.7: S-depth, gate and wire counts of the subcircuit C in CS computing Lagrange
coefficients for various choices of C. All measurements expressed as a function of d, the
number of Lagrange evaluation points.

Therefore, we proceed as in “butterfly” construction described above, but instead of

computing ~β recursively, we eliminate the recursive call and compute as ~β = τ ·~α. More

precisely, we let~α := FFTω2
(
1, τ2, . . . , τd−2) be the “half-size” FFT on the even coefficients

and compute the “full-size” FFT as follows:

FFTω

(
1, τ, τ2, . . . , τd−1

)
= (α0 + ω0τα0, . . . , αd/2−1 + ωd/2−1ταd−1,

α0 −ω0τα0, . . . , αd/2−1 −ωd/2−1ταd/2−1) .

Note that each recursive call, the vector (1, τ2, . . . , τd−2) is a geometric progression, so by

induction in each recursive call Podd is a scaled copy of Peven.

Figure shows how this approach is realized as a circuit in CS. As before, we compute the

FFT by a log d layer circuit. The last layer refers to the preceding layer for the evaluations

αi of the “half-size” FFT computation. A sequence of d/2 multiplication gates perform

the scaling by τ and d addition gates compute the “full-size” FFT output. Similarly, the

next-to-last layer contains d/4 multiplication gates that perform scaling by τ2 and d/2

addition gates for computing that layer’s output, and so on. The first layer refers to

constant 1 as the base case output and its multiplication gate performs scaling by τd/2.

Overall, the circuit contains 2d− 2 addition gates and d− 1 multiplication gates. Finally,

we remark that similar to the butterfly circuit above, all intermediate values of this FFT

circuit are just linear combinations of 1, τ, . . . , τd−1 and therefore its use does not produce

any auxiliary outputs that can not be publicly computed from its inputs.
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Appendix A

Proofs of security

Chapter 3 describes a multiparty computation protocol for sampling common reference

string of many zero-knowledge SNARK protocols. For technical reasons this protocol

assumes that the zk-SNARK constructions remain secure even when the CRS sampling

procedure outputs extra elements. More precisely, many zk-SNARK constructions from the

literature obtain their parameters by sampling from the distribution {C(τ) · P : τ ← Fn},
where the circuit C does not belong to the sampling circuit class CS. The protocol described

in Chapter 3 thus considers augmented circuits C′ which, compared to original sampling

circuits C, produce additional outputs, but fits in the class CS. In this appendix we prove

that, for proof systems of Danezis et al. [DFGK14] and Parno et al. [PGHR13], sampling

from such expanded distribution {C′(τ) · P : τ ← Fn} does not break security of the

underlying zk-SNARK proof systems.

A.1 Preliminaries

Fields and polynomials. We denote by F a finite field and by Fr the field of size r. We

denote by F[z] the ring of univariate polynomials over F, and by F≤d[z] the subring of

univariate polynomials of degree at most d. For a polynomial P ∈ F[z] we write (P)i to

denote the coefficient of zi in P, so P(z) can be expanded as ∑
deg P
i=0 (P)izi. When S is a

set of polynomials over F, we denote by span(S) the set of all F-linear combinations of

polynomials in S.

Notation for extractors. We write (y; x)← (A‖EA)(z) when the algorithmA, given input

z, outputs y, and the algorithm EA, given the same input (including the same random tape

as A), outputs x.
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A useful lemma on spans of polynomials. For ensuring that a polynomial is in a certain

span, we use [GGPR13, Lemma 10], which we restate and for which we provide an explicit

proof.

Lemma A.1.1. Let d ∈N and let S = {p1(z), . . . , pn(z)} ⊆ F≤d[z] be a set of polynomials. Let

a(z) ∈ F≤d+1[z] be chosen uniformly at random, subject to (a(z) · pk(z))d+1 = 0 for k = 1, . . . , n.

Then for all algorithms A:

Pr


u(z) ∈ F≤d[z]

u(z) 6∈ span(S)

(a(z) · u(z))d+1 6= 0

∣∣∣∣∣∣∣∣
τ ← F

u(z)← A(S, τ, a(τ))

 ≤ 1/|F| .

Proof. Let a(z) = ∑d+1
i=0 aizi and express the polynomials pk(z) in similar fashion: S =

{∑d
i=0 pk,izi}k. To the adversary, a(z) is a uniformly random polynomial subject to M ·~a =~b,

where

M :=


p1,0 . . . p1,d 0

... . . . ...
...

pn,0 . . . pn,d 0

τd+1 . . . τ 1

 , ~a :=


ad+1

...

a0

 , and~b :=


0
...

0

a(τ)

 .

The rows of M encode the constraints (a(z) · pk(z))d+1 = 0, and the knowledge of a(τ),

respectively. We may assume, without loss of generality, that dim(span(S)) < d + 1,

because if the polynomials in S spanned a (d + 1)-dimensional space then any polynomial

u(z) output by A would be in span(S) and the lemma would follow. Therefore it suffices

to consider the case that M is not full rank, and there exist l = (d + 2)− rank(M) > 0 row

vectors v1, . . . , vl that augment M to a full rank matrix M′.

Consider the following system of equations:

M′ ·~a =


M

v1
...

vl

 ·~a =


b

c1
...

cl

 .

The matrix M′ is full rank so each choice of (c1, . . . , cl) ∈ Fl corresponds to a unique ~a

satisfying the system above. Thus picking a random a(z) subject to (a(z) · pk(z))d+1 = 0

and a fixed value of a(τ) is the same as picking random c1, . . . , cl, and solving for the

coefficients ai of a(z).
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Picking c1, . . . , cl can be done after the adversary returns the polynomial u(z) =

∑d
i=0 uizi as this does not change the view of the adversary. Express (u0, . . . , ud, 0) as

a linear combination of the rows of M′. The polynomial u(x) is not in span(S), therefore

this linear combination has non-zero coefficient for at least one of v1, . . . , vl. We conclude

that the value of (a(z) · u(z))d+1 = (u0, . . . , ud, 0) ·~a has a contribution from random

element ci for some i, and is thus uniformly random.

Remark A.1.2. It would be useful to prove a stronger version of the theorem, letting

a(z) be of as low degree as possible, and still having (a(z) · pk(z))d+1 = 0 imply that

(a(z) · u(z))d+1 = 0. Unfortunately, even if the adversary does not get to see a(τ), degree

d + 1 is necessary unless more is known about the set S. For example, if we knew that

dim(span(S)) < d− 1, which is true when |S| < d− 1, we could prove the theorem for

a(z) ∈ F≤d[z].

A.1.1 Security assumptions

We introduce several security assumptions:

Assumption A.1.3 (q-PKE). The q(λ)-power knowledge of exponent assumption holds relative to

a bilinear group generator G for the class Z if, for every polynomial-size auxiliary input generator

Z ∈ Z , and every polynomial-size adversary A, there exists a polynomial-size extractor EA such

that:

Pr



e(Q1, α · P2) = e(P1,Q2)

and

Q1 6= ∑
q
i=0 aiτ

i · P1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gk := (r, G1, G2, GT, e)← G(1λ)

P1 ← G1,P2 ← G2, τ ← Fr, α← Fr

z← Z(gk,P1,P2, τ)

σ :=


gk P1 τ · P1 . . . τq · P1

P2 τ · P2 . . . τq · P2

α · P1 ατ · P1 . . . ατq · P1

α · P2 ατ · P2 . . . ατq · P2


(Q1,Q2; a0, . . . , aq)← (A‖EA)(σ, z)


≤ negl(λ) .

Assumption A.1.4 (q-PDH). The q(λ)-power Diffie-Hellman assumption holds relative to a
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bilinear group generator G if, for every polynomial-size adversary A:

Pr

 Q = τq+1 · P1

∣∣∣∣∣∣∣∣∣∣∣∣∣

gk := (r, G1, G2, GT, e)← G(1λ)

P1 ← G1,P2 ← G2, τ ← Fr

σ :=

(
gk P1 τ · P1 . . . τq · P1 τq+2 · P1 . . . τ2q · P1

P2 τ · P2 . . . τq · P2 τq+2 · P2 . . . τ2q · P2

)
Q ← A(σ)


≤ negl(λ) .

Assumption A.1.5 (q-TSDH). The q(λ)-power target group strong Diffie-Hellman assumption

holds relative to a bilinear group generator G if, for every polynomial-size adversary A:

Pr


c ∈ Zr \ {τ}

and

Y = e(P1,P2)
1

τ−c

∣∣∣∣∣∣∣∣∣∣∣∣∣

gk := (r, G1, G2, GT, e)← G(1λ)

P1 ← G1,P2 ← G2, τ ← Fr

σ :=

(
gk P1 τ · P1 . . . τq · P1

P2 τ · P2 . . . τq · P2

)
(c, Y)← A(gk, σ)


≤ negl(λ) .

The q-PKE assumption was originally introduced by Groth [Gro10] in the symmetric

setting. Variants of the q-PKE assumption are used in various papers: [PGHR13] uses

the symmetric variant from [Gro10]. [DFGK14] and [CFH+15] both introduce and use

asymmetric variants, slightly different from one we use. When G1 = G2, the variant

presented here is equivalent to the symmetric assumption of [Gro10].

The q-PDH assumption was originally introduced by Groth [Gro10] in the symmetric

setting. Variants of the q-PDH assumption are used in various papers: [PGHR13] uses the

symmetric variant from [Gro10], [DFGK14] introduces and uses the asymmetric variant

described above, [CFH+15] uses the same asymmetric variant.

The q-SDH assumption was originally introduced by Boneh and Boyen [BB04] where

the adversary is required to output a pair (c, 1
τ−c · P1). The weaker q-TSDH assumption in

the target group was introduced and used by [PGHR13]. Variants of the q-TSDH assump-

tion are used in various papers: [DFGK14] introduces and uses the asymmetric variant

described above, [CFH+15] uses the same asymmetric variant.

A.1.2 Duplex pairing groups

A group G of prime order r is duplex pairing if there are order-r groups G1 and G2 such

that (i) there is a pairing e : G1 ×G2 → GT for some target group GT, and (ii) there are
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generators P1 of G1 and P2 of G2 such that G is isomorphic to {(αP1, αP2) | α ∈ Fr} ⊆
G1 ×G2. We can use e to endow G with a pairing eG : G×G → GT as follows. For any

two elements Q = (Q1,Q2) ∈ G1 ×G2 and R = (R1,R2) ∈ G1 ×G2 of G we define

eG(Q,R) := e(Q1,R2) = e(R1,Q2), where the last equality holds as G is duplex-pairing.

A.2 The DFGK zk-SNARK protocol

Definition A.2.1. A square span program (SSP) of size m and degree d over a field F is a pair

(~v, t), where ~v is a vector of m + 1 polynomials v0(z), . . . vm(z) ∈ F≤d−1[z] and t(z) ∈ F[z] is a

monic polynomial of degree exactly d.

Definition A.2.2. The satisfaction problem of a size-m SSP (~v, t) is the relationR(~v,t) of pairs

(~x,~a) ∈ Fn ×Fm satisfying the following conditions: (a) n ≤ m and xi = ai for 1 ≤ i ≤ n (that

is,~a extends ~x); and (b) t(z) divides (v0(z) + ∑m
i=1 aivi(z))

2 − 1.

Remark A.2.3. The protocol in Figure A.1 is [DFGK14]’s zk-SNARK, presented with minor

modifications. First, instead of having the generator G output a single common reference

string crs, we partition its components in the proving key pk and the verification key vk.

Second, for efficiency reasons we augment vk with the elements vkIC,i := vi(τ) · P1 and

vkαt := αt(τ) · P2. Doing so does not compromise security as vkIC,i and vkαt are known

linear combinations of public elements pk
(1)
H,i := τi · P1, respectively, pk

(2)
H,i := ατi · P2

included in the proving key.

Remark A.2.4. As compared to Figure A.1, the implementation in libsnark has matching

vk. The pk of libsnark has the following differences: (a) it additionally includes the terms

t(τ) · P1, {vi(τ) · P1}m
i=n+1 and {vi(τ) · P2}m

i=0; (b) it omits the terms pk
(2)
H,i , as they are not

needed by the prover.
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Public parameters. The group key gk := (r, G1, G2, GT ,
e) ← G(1λ): a prime r, two cyclic groups G1 and G2 of
order r, and a pairing e : G1 ×G2 → GT (where GT is also
cyclic of order r).

(a) Key generator G

• INPUTS: square span program (~v, t)

• OUTPUTS: proving key pk, verification key vk, simula-
tion trapdoor trapS and extraction trapdoor trapE

1. Sample two generators P1 ∈ G1, P2 ∈ G2 and four
field elements α, β, τ, ρ ∈ Fr, all at random.

2. Set pk := (gk, (~v, t), pkβt, pk
(1)
H , pk(2)H , pkK) where

pkβt := βt(τ) · P1 ,

pk
(1)
H := (P1, . . . , τd · P1) ,

pk
(2)
H := (α · P2, . . . , ατd · P2) ,

pkK := (βvn+1(τ) · P1, . . . , βvm(τ) · P1) .

3. Set vk := (gk, vk1, vkα, vkαt, vkρ, vkρβ, vkIC) where

vk1 := P1 vkα := α · P2 vkαt := αt(τ) · P2
vkρ := ρ · P2 vkρβ := ρβ · P2

,

and
vkIC := (v0(τ) · P1, . . . , vn(τ) · P1) .

4. Set trapS := (gk,P1,P2, α, β, τ).

5. Set trapE := (P2, . . . , τd · P2, α · P1, . . . , ατd · P1).

6. Output (pk, vk, trapS, trapE ).

(b) Simulator S

• INPUTS: simulation trapdoor trapS, input ~x ∈ Fn
r

• OUTPUTS: simulated proof π

1. Sample φ ∈ Fr at random.

2. Compute h ∈ Fr as follows:

h :=
(v0(τ) + ∑n

i=1 xivi(τ) + φ)2 − 1
t(τ)

,

and set:

πH := h · P1, πw := φ · P1, πwβ := βφ · P1,

π
(2)
V := α

(
v0(τ) +

n

∑
i=1

xivi(τ) + φ

)
· P2 .

3. Output π := (πH, πw, πwβ, π
(2)
V ).

(c) Prover P

• INPUTS: proving key pk, input ~x ∈ Fn
r , and assignment

~a ∈ Fm
r , where (~x,~a) ∈ R(~v,t).

• OUTPUTS: proof π

1. Sample δ ∈ Fr at random.

2. Compute ~h = (h0, . . . , h0) ∈ Fd+1
r , the coefficients of

the polynomial

H(z) :=
(v0(z) + ∑m

i=1 aivi(z) + δt(z))2 − 1
t(z)

.

3. Use pk
(1)
H and pk

(2)
H to compute

πw :=

(
m

∑
i=n+1

aivi(τ) + δt(τ)

)
· P1 ,

π
(2)
V := α

(
v0(τ) +

n

∑
i=1

aivi(τ) + δt(τ)

)
· P2

4. Compute

πwβ :=
m

∑
i=n+1

ai · pkK,i−n + δ · pkβt

= β

(
m

∑
i=n+1

aivi(τ) + δt(τ)

)
· P1

πH :=
d

∑
i=0

hi · pk
(1)
H,i= H(τ) · P1 .

5. Output π := (πH, πw, πwβ, π
(2)
V ).

(d) Verifier V

• INPUTS: verification key vk, input ~x ∈ Fn
r , and proof π

• OUTPUTS: decision bit b

1. Compute π
(1)
V := (vkIC,0 + ∑n

i=1 xi · vkIC,i) + πw.

2. Check that (π(1)
V , π

(2)
V ) is a knowledge commitment:

e(π(1)
V , vkα) = e(vk1, π

(2)
V ) .

3. Check that the same coefficients were used:

e(πw, vkρβ) = e(πwβ, vkρ) .

4. Check SSP divisibility:

e(π(1)
V , π

(2)
V ) = e(πH, vkαt) · e(vk1, vkα) .

5. If all checks pass, output b := 1 (accept), otherwise
output b := 0 (reject).

Figure A.1: The zk-SNARK protocol of Danezis et al. [DFGK14].
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Definition A.2.5. Define the class ZSSP of auxiliary input generators as follows. An auxiliary

input generator Z(~v,t) ∈ ZSSP on input (gk,P1,P2, τ) samples random ρ, β ∈ Fr and returns the

quadruple ({βvi(τ) · P1}m
i=n+1, βt(τ) · P1, ρ · P2, ρβ · P2).

Theorem A.2.6. Assume that, relative to bilinear group generator G, the d(λ)-PDH and d(λ)-

TSDH assumptions hold, and d(λ)-PKE assumption holds for the class ZSSP. Then the proof

system in Figure A.1 is proof-of-knowledge. That is, for every security function λ : N→N, every

square span program (~v, t) of degree d(λ), and every polynomial-size adversary A, there exists a

polynomial-size extractor EA such that:

Pr


V(vk,~x, π) = 1

and

(~x,~a) 6∈ R(~v,t)

∣∣∣∣∣∣∣∣
gk← G(1λ)

(pk, vk, trapS, trapE )← G(gk, (~v, t))

((~x, π);~a)← (A(pk, vk)‖EA(pk, vk, trapE ))

 ≤ negl(λ) .

We prove the theorem by introducing and proving the three following lemmas.

Lemma A.2.7. Assume that, d(λ)-PKE assumption holds for the class ZSSP relative to a bilinear
group generator G. Then, for every security function λ : N→N, every square span program (~v,
t) of degree d(λ), and every polynomial-size adversary A, there exists a polynomial-size adversary
A′ such that:

Pr



V(vk,~x, π) = 0

or all of the following hold:

~x′ = ~x

π′ = π = (πH, πw, πwβ, π
(2)
V )

π
(2)
V = α(v(τ) + δt(τ)) · P2

deg v(z) ≤ d− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gk← G(1λ)

(pk, vk, trapS, trapE )← G(gk, (~v, t))

((~x, π); (~x′, π′, δ, v(z)))← (A(pk, vk)‖A′(pk, vk, trapE ))


≥ 1−negl(λ) ,

where α, τ and P2 above refer to the elements sampled by G.

In other words, whenever A outputs an accepting instance-proof pair, the adversary A′ also

returns the same instance-proof pair together with an “explanation” of the term π
(2)
V . We use the

term “augmented adversary” to denote adversaries A′ which produce such augmented output.

Proof. We use the SSP adversary A to construct an adversary BPKE for the d-PKE assump-

tion, and use the PKE extractor for BPKE to obtain δ and v(z). Essentially, BPKE calls

adversary A, and when the adversary returns proof π, the adversary BPKE computes

and outputs a knowledge commitment (π(1)
V , π

(2)
V ). The d-PKE assumption guarantees an

algorithm EBPKE , the PKE extractor, which given the same inputs as BPKE, returns a linear

combination “explaining” the knowledge commitment. Our augmented adversary A′ will

read off δ and v(z) from EBPKE’s output. Despite the simplicity of the high level idea, we
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have to be careful to ensure that the view of BPKE is constructible given just the d-PKE

challenge and auxiliary input; we do so as explained next.

Assume that d-PKE assumption holds for the class ZSSP and consider an adversary

BPKE that works as follows. On input σ := (gk,P1, τ · P1, . . . , τd · P1,P2, τ · P2, . . . , τd · P2,

α · P1, ατ · P1, . . . , ατd · P1, α · P2, ατ · P2, . . . , ατd · P2), and auxiliary input z := Z(gk,P1,

P2, τ), the adversary BPKE:

1. Uses σ and z to construct the SSP keypair (pk, vk) for the square span program (~v, t).

Except for vkIC and vkαt, every term of pk and vk appears verbatim in σ or z. BPKE
constructs the terms vkIC,i := vi(τ) · P1 and vkαt := αt(τ) · P2 as a linear combination of

elements in its challenge; BPKE can always do so as deg vi(z), deg t(z) ≤ d.

2. Runs the SSP adversaryA on (pk, vk). By construction (pk, vk) has the same distribution

as the keypair output by the SNARK generator G(gk, (~v, t)).

3. When A returns the instance-proof pair (~x, π), BPKE parses the proof as π = (πH, πw,

πwβ, π
(2)
V ), computes π

(1)
V := (vkIC,0 + ∑n

i=1 xi · vkIC,i) + πw and returns the pair (π(1)
V ,

π
(2)
V ).

Whenever A outputs a valid proof, the pair output by BPKE satisfies e(π(1)
V , vkα) =

e(vk1, π
(2)
V ) (indeed, this is just one of the checks performed by the SNARK verifier

V(vk,~x, π)). The d-PKE assumption implies that there is an extractor EBPKE that, given

the same input as BPKE (including BPKE’s randomness tape), outputs a vector~c such that

π
(1)
V = ∑d

i=0 ciτ
i · P1.

This extraction step is at the core of the augmented adversary A′. More precisely, on

input (pk, vk) the adversary A′ works as follows:

1. Runs adversary A on (pk, vk) and receives its output (~x, π).

2. Uses pk and trapE to construct the input σ for BPKE, and uses pk and vk to construct the

auxiliary input z.

3. Runs extractor EBPKE on σ, z and the same randomness tape as used in Step 1.

4. When EBPKE returns~c, A′ sets δ := cd, v(z) := ∑d
i=0 cizi − δt(z), and returns the quadru-

ple (~x, π, δ, v(z)).

As the polynomial t(z) is monic we have that deg v(z) ≤ d − 1 and π
(2)
V = α(v(τ) +

δt(τ)) · P2, as required.

Lemma A.2.8. Assume that d(λ)-TSDH assumption holds relative to bilinear group generator

G. Then for every security function λ : N→N, every square span program (~v, t) of degree d(λ),
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and every polynomial-size augmented adversary A′ (see Lemma A.2.7) we have the following:

Pr


V(vk,~x, π) = 1

and

v(z)2 − 1 is not divisible by t(z)

∣∣∣∣∣∣∣∣
gk← G(1λ)

(pk, vk, trapS, trapE )← G(gk, (~v, t))

(~x, π, δ, v(z))← A′(pk, vk, trapE )

 ≤ negl(λ) .

Proof. Assume that the statement is false and there exists an augmented adversary A′ for

which the above probability is non-negligible. Then we can use A′ to break the d-TSDH

assumption with non-negligible probability. More precisely, we construct the d-TSDH

adversary BTSDH that on input σ := (gk,P1, τ · P1, . . . , τd · P1,P2, τ · P2, . . . , τd · P2) works

as follows:

1. BTSDH samples random α, β, ρ ∈ Fr and uses those and the elements of σ to construct

the keypair (pk, vk) and extraction trapdoor trapE from the same distribution as output

by G(gk, (~v, t)).

2. BTSDH samples random α, β, ρ ∈ Fr and uses those and the elements of σ to construct

the keypair (pk, vk) and extraction trapdoor trapE from the same distribution as output

by G(gk, (~v, t)). Every element of the keypair is of form p(τ) · P1 or p(τ) · P2 for some

polynomial p whose coefficients depend on α, β, ρ. Moreover, the degree of p is at most

d, so BTSDH can always find the necessary encodings of τi in its challenge. Just like G,

BTSDH sets trapE := ⊥. The values of τ and α, β, ρ are all random, so the pair ((pk, vk),

trapE ) has the same distribution as induced by G.

3. BTSDH runs the augmented SSP adversary A′ on (pk, vk, trapE ). When A′ returns the

quadruple (~x, π, δ, v(z)), BTSDH parses the proof as π = (πH, πw, πwβ, π
(2)
V ).

4. Successful verification implies that e(π(1)
V , π

(2)
V ) = e(πH, vkαt) · e(vk1, vkα). The poly-

nomial t(z) does not divide v(z)2 − 1, so BTSDH computes a root d of t(z) that is not

a root of v(z)2 − 1 and writes (v(z) + δt(z))2 − 1 as a(z)(z − d) + b where b 6= 0.

Note that e(π(1)
V , π

(2)
V ) = e(P1,P2)

α(v(τ)+δt(τ))2
, so we have e(P1,P2)

α(a(τ)(τ−d)+b) =

e(πH, vkαt) = e(πH, αt(τ) · P2), or e(P1,P2)
a(τ)/b+ 1

τ−d = e(πH, t(τ)/((τ − d)b) · P2).

5. BTSDH uses terms of its challenge to compute T := e(P1,P2)
a(τ)/b and Q = t(τ)/((τ −

d)b) · P2; it can always do so as deg a(z) ≤ 2d − 1 and deg t(z) := d. In particular,

BTSDH can compute powers e(P1,P2)
i with i > d by evaluating e(τi · P1, τi−d · P2).

6. BTSDH computes Y := e(πH,Q) · T−1 and returns the pair (d, Y).

By construction Y := e(P1,P2)
1

τ−d so, whenever A′ returns a valid proof with v(z)2 − 1

not divisible by t(z), BTSDH wins the d-TSDH security game.

Lemma A.2.9. Assume that d(λ)-PDH assumption holds relative to bilinear group generator G.
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Then for every security function λ : N→N, every square span program (~v, t) of degree d(λ), and

every polynomial-size augmented adversary A′ (see Lemma A.2.7) we have the following:

Pr


V(vk,~x, π) = 1

and

vmid(z) 6∈ span{vn+1(z), . . . , vm(z), t(z)}

∣∣∣∣∣∣∣∣
gk← G(1λ)

(pk, vk, trapS, trapE )← G(gk, (~v, t))

(~x, π, δ, v(z))← A′(pk, vk, trapE )

 ≤ negl(λ) ,

where vmid(z) := v(z) + δt(z)− v0(z)−∑n
i=1 xivi(z).

Proof. Assume that the statement is false and there exists an augmented adversary A′ for

which the above probability is non-negligible. Then we can use A′ to break the (d+1)-PDH

assumption with non-negligible probability. More precisely, we construct the (d+1)-PDH

adversary BPDH that on input σ := (gk,P1, τ · P1, . . . , τd+1 · P1, τd+3 · P1, . . . , τ2d+2 · P1,

P2, τ · P2, . . . , τd+1 · P2, τd+3 · P2, . . . , τ2d+2 · P2) works as follows:

1. BPDH picks a random degree d+ 2 polynomial a(z) such that, for each of the polynomials

a(z) · vn+1(z), . . . , a(z) · vm(z) and a(z) · t(z) the coefficient of zd+2 is 0. By Lemma A.1.1

it can always do so.

2. BPDH samples random α and β′ 6= 0 and uses the elements of σ to construct the keypair

(pk, vk) from the same distribution as output by G(gk, (~v, t)) for α := α, β := β′a(τ). The

terms pk
(1)
H , pk

(2)
H , vkαt, vkα and vkIC do not involve β and can be computed directly from

the challenge. The terms pkK := (βvn+1(τ) · P1, . . . , βvm(τ) · P1) and pkβt := βt(τ) · P1

are known linear combinations of challenge elements and, by choice of a(z), do not

involve the term τd+2 · P1. Finally, BPDH samples ρ′ ∈ F∗r and constructs elements

vkρ = ρ′t(τ)P2 and vkρβ = ρ′βt(τ) · P2. This corresponds to computing vkρ := ρ · P2

and vkρβ := ρβ · P2 for implicitly defined ρ = ρ′t(τ). Note β and ρ are uniformly

random, as β′ and ρ′, respectively, are and therefore the keypair constructed above has

the same distribution as keypair output by G. Just like G, BPDH sets trapE := ⊥.

3. BPDH runs the augmented SSP adversary A′ on (pk, vk, trapE ). When A′ returns the

quadruple (~x, π, δ, v(z)), BTSDH parses the proof as π = (πH, πw, πwβ, π
(2)
V ).

4. The random choice of β′ hides all information about a(z) from the adversary, therefore

we can apply Lemma A.1.1: if vmid(z) is outside the span of {vn+1(z), . . . , vm(z), t(z)},
then vmid(z) · a(z) has a non-zero coefficient for zd+2. That is, vmid(z) · a(z) = ∑2d+2

i=0 cizi

with cd+2 6= 0. Because the proof passes the verifiers tests, we have that πw = π
(1)
V −

(vkIC,0 + ∑n
i=1 xi · vkIC,i) = vmid(τ) · P1 and πwβ = β · πw = β′a(τ)vmid(τ) · P1.
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5. BPDH uses πwβ and elements of its challenge to compute and return τd+2 · P1, as follows:

τd+2 · P1 =
1

β′cd+2

πwβ −
2d+2

∑
i=0

i 6=d+2

β′ciτ
i · P1

 .

We conclude that whenever A′ returns an accepting proof with vmid(z) not in the expected

span, BPDH correctly answers its challenge.

Proof of Theorem A.2.6. Assume, without loss of generality, that we have access to aug-

mented adversary A′ (see Lemma A.2.7 for details) and let (~x, π, δ, v(z)) be the quadruple

returned by A′. We will show that, whenever the instance-proof pair (~x, π) is accepted by

the verifier, we can use δ and v(z) to recover a full satisfying assignment~a for this instance.

Define vmid(z) := v(z) + δt(z)− v0(z)− ∑n
i=1 xivi(z). By Lemma A.2.9, vmid(z) is in

the span of {vn+1(z), . . . , vm(z), t(z)}. Express vmid(z) as Fr-linear combination of these

vectors: vmid(z) = ∑m
i=n+1 aivi(z) + δ′t(z). Then, setting ai = xi for 1 ≤ i ≤ n, we have:

v(z) = v0(z) + ∑m
i=1 aivi(z) + (δ′ − δ)t(z). By Lemma A.2.8, t(z) divides v(z)2 − 1, which

means that t(z) also divides (v0(z) + ∑m
i=1 aivi(z))

2 − 1, and therefore (~x,~a) ∈ R(~v,t). We

conclude that there exists the required SSP extractor: EA performs the above steps and

returns~a.

Remark A.2.10. Assuming the very mild condition that the number of auxiliary variables

is at least one less than the number of constraints, i.e., d > m − n + 1, one can prove

Lemma A.2.9 by relying on d-PDH assumption (see Remark A.1.2); this is the approach of

[DFGK14]. We choose to not place any restrictions on the SSP and thus rely on (d+ 1)-PDH

assumption instead.

Remark A.2.11. The terms involving β are the only ones that are language-specific and,

in essence, β “guards” against choosing v(z) not in the span of the language-specific

polynomials vi(z). If one revealed the encodings of βτi, the adversary would be able to

arbitrarily change the language.

Remark A.2.12. The only reason to choose random ρ is that we don’t know how to generate

an encoding of β in the (d+ 1)-PDH reduction, so we generate two values ρ · P2 and ρβ · P2

instead. However, we could set ρ := t(τ) without breaking the security proof.
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A.2.1 MPC generator in duplex pairing setting

The computation C(α, β, ρ, τ) · (P1,P2) computes the following outputs:(
1, τ, . . . , τd,

α, ατ, . . . , ατd,

v0(τ), . . . , vm(τ), t(τ),

vn+1(τ)β, . . . , vm(τ)β, t(τ)β,

α, ρ, ρβ, αt(τ), v0(τ), . . . , vn(τ)
)
· (P1,P2) .

Crucially the auxiliary input is independent of α (the terms that involve β, ρ do not involve

α), so if we are presented a pair (x · P1, αx · P2), we can always decompose x as sum of

powers of τ.

A.3 The PGHR zk-SNARK protocol

Definition A.3.1. A quadratic arithmetic program (QAP) of size m and degree d over a field F

is a quadruple (~A,~B, ~C, Z), where each of ~A, ~B and ~C is a vector of m + 1 polynomials in F≤d−1[z],

and Z(z) ∈ F[z] is a monic polynomial of degree exactly d.

Definition A.3.2. We say that a size-m QAP (~A,~B, ~C, Z) is non-degenerate for inputs of size

n ≤ m, if it satisfies the following two conditions: (a) the polynomials A0(z), . . . , An(z) are all lin-

early independent; and (b) the spans span{A0(z), . . . , An(z)} and span{An+1(z), . . . , Am(z)}
are disjoint, except at the origin.

Definition A.3.3. The satisfaction problem of a size-m QAP (~A,~B, ~C, Z) is the relation

R(~A,~B,~C,Z) of pairs (~x,~a) ∈ Fn ×Fm satisfying the following conditions: (a) n ≤ m and xi = ai

for 1 ≤ i ≤ n (that is,~a extends ~x); and (b) Z(z) divides the polynomial (A0(z) + ∑m
i=1 ai Ai(z)) ·

(B0(z) + ∑m
i=1 aiBi(z))− (C0(z) + ∑m

i=1 aiCi(z)).

For the purposes of completeness and to fix notation, in Figure A.2 below we recall the

zk-SNARK protocol of Parno et al. [PGHR13]. The zk-SNARK can be used to prove/verify

satisfiability of Fr-arithmetic circuits, where r is the order of the two cyclic groups G1 and

G2, forming the domain of the pairing e : G1 ×G2 → GT.

Definition A.3.4. We define three classes of auxiliary input generators, ZQAP,A, ZQAP,B and

ZQAP,C, as follows.
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• On input (gk,P1,P2, τ) an auxiliary input generator ZA
(~A,~B,~C,Z)

∈ ZQAP,A samples random

ρ′A, ρ′B, αB, αC, β, γ ∈ Fr and returns the tuple

{ρ′A}∪


⊥

αB · P1 {Bi(τ)ρB · P2}m+3
i=0 {Bi(τ)αBρB · P1}m+3

i=0

αC · P2 {Ci(τ)ρAρB · P1}m+3
i=0 {Ci(τ)αCρAρB · P1}m+3

i=0

{β
(

Ai(τ)ρA + Bi(τ)ρB + Ci(τ)ρAρB
)
· P1}m+3

i=0

∪


γ · P2

γβ · P1

γβ · P2

Z(τ)ρAρB · P2

 .

• On input (gk,P1,P2, τ) an auxiliary input generator ZB
(~A,~B,~C,Z)

∈ ZQAP,B samples random

ρ′A, ρ′B, αA, αC, β, γ ∈ Fr and returns the tuple

{ρ′B}∪


αA · P2 {Ai(τ)ρA · P1}m+3

i=0 {Ai(τ)αAρA · P1}m+3
i=0

⊥
αC · P2 {Ci(τ)ρAρB · P1}m+3

i=0 {Ci(τ)αCρAρB · P1}m+3
i=0

{β
(

Ai(τ)ρA + Bi(τ)ρB + Ci(τ)ρAρB
)
· P1}m+3

i=0

∪


γ · P2

γβ · P1

γβ · P2

Z(τ)ρAρB · P2

 .

• On input (gk,P1,P2, τ) an auxiliary input generator ZC
(~A,~B,~C,Z)

∈ ZQAP,C samples random

ρ′A, ρ′B, αA, αB, β, γ ∈ Fr and returns the tuple

{ρ′Aρ′B} ∪


αA · P2 {Ai(τ)ρA · P1}m+3

i=0 {Ai(τ)αAρA · P1}m+3
i=0

αB · P1 {Bi(τ)ρB · P2}m+3
i=0 {Bi(τ)αBρB · P1}m+3

i=0

⊥
{β
(

Ai(τ)ρA + Bi(τ)ρB + Ci(τ)ρAρB
)
· P1}m+3

i=0

 ∪


γ · P2

γβ · P1

γβ · P2

⊥

 .

Everywhere above we take ρA and ρB to have the following implicit values: ρA := ρ′Aτd+1 and

ρB := ρ′Bτ2(d+1), and just like the generator G we set Am+1 = Bm+2 = Cm+3 = Z and

Am+2 = Am+3 = Bm+1 = Bm+3 = Cm+1 = Cm+2 = 0.

Theorem A.3.5. Assume that, relative to bilinear group generator G, the d(λ)-PDH and d(λ)-

TSDH assumptions hold, and d(λ)-PKE assumption holds for the classes ZQAP,A, ZQAP,B and

ZQAP,C. Then the proof system in Figure A.2 is proof-of-knowledge. That is, for every security

function λ : N→N, every input size n(λ), every quadratic arithmetic program (~A,~B, ~C, Z) of

degree d(λ) that is non-degenerate for inputs of size n(λ), and every polynomial-size adversary A,
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there exists a polynomial-size extractor EA such that:

Pr


V(vk,~x, π) = 1

and

(~x,~a) 6∈ R(~A,~B,~C,Z)

∣∣∣∣∣∣∣∣
gk← G(1λ)

(pk, vk, trapS, trapE )← G(gk, (~A,~B, ~C, Z))

((~x, π);~a)← (A(pk, vk)‖EA(pk, vk, trapE ))

 ≤ negl(λ) .

We prove the theorem by introducing and proving the three following lemmas.

Lemma A.3.6. Assume that, d(λ)-PKE assumption holds for the for the classes ZQAP,A, ZQAP,B
and ZQAP,C relative to a bilinear group generator G. Then, for every security function λ : N→N,
every input size n(λ), every quadratic arithmetic program (~A,~B, ~C, Z) of degree d(λ) that is
non-degenerate for inputs of size n(λ), and every polynomial-size adversary A, there exists a
polynomial-size adversary A′ such that:

Pr



V(vk,~x, π) = 0

or all of the following hold:

~̃x = ~x, |~x| = n

π̃ = π

π′A = (v′A(τ) + δ1Z(τ))αAρA · P1

π′B = (vB(τ) + δ2Z(τ))αBρB · P1

π′C = (vC(τ) + δ3Z(τ))αCρAρB · P1

deg vA(z), deg vB(z), deg vC(z) ≤ d− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gk← G(1λ)

(pk, vk, trapS, trapE )← G(gk, (~A,~B, ~C, Z))

(~x, π)← A(pk, vk)

(~̃x, π̃, v′A(z), vB(z), vC(z), δ1, δ2, δ3)← A′(pk, vk, trapE )


≥ 1−negl(λ) ,

where αA, αB, αC, τ and P1 above refer to the elements sampled by G, and the proof π is interpreted

as (πA, π′A, πB, π′B, πC, π′C, πK, πH).

In other words, whenever A outputs an accepting instance-proof pair, the adversary A′ also

returns the same instance-proof pair together with an “explanation” of the terms π′A, π′B, π′C. We

use the term “augmented adversary” to denote adversaries A′ which produce such augmented

output.

Proof. The proof is analogous to that of Lemma A.2.7. To obtain the polynomial v′A(z) and

the randomization term δ1, we use the QAP adversary A to construct an adversary BPKE
for the d-PKE assumption. Namely, the adversary BPKE:

1. uses its challenge (gk,P1, τ · P1, . . . , τd · P1,P2, τ · P2, . . . , τd · P2, αA · P1, αAτ · P1, . . . ,

αAτd · P1, αA · P2, αAτ · P2, . . . , αAτd · P2) and auxiliary input to construct QAP keypair

(pk, vk);

2. runs A on this keypair;

3. when A returns the proof π, the adversary BPKE returns the pair (πA, π′A).

Whenever the proof returned by A verifies, the adversary BPKE correctly responds to its
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challenge.

Lemma A.3.7. Assume that (3d(λ) + 2)-TSDH assumption holds relative to bilinear group

generator G. Then for every security function λ : N→N, every quadratic arithmetic program (~A,
~B, ~C, Z) of degree d(λ), and every polynomial-size augmented adversary A′ (see Lemma A.3.6) we

have the following:

Pr


V(vk,~x, π) = 1

and

vA(z) · vB(z)− vC(z)

is not divisible by Z(z)

∣∣∣∣∣∣∣∣∣∣
gk← G(1λ)

(pk, vk, trapS, trapE )← G(gk, (~A,~B, ~C, Z))

(~x, π, v′A(z), vB(z), vC(z), δ1, δ2, δ3)← A′(pk, vk, trapE )

 ≤ negl(λ) ,

where vA(z) := A0(z) + ∑n
i=1 xi Ai(z) + v′A(z).

Proof. Assume that the statement is false and there exists an augmented adversary A′

for which the above probability is non-negligible. Then we can use A′ to break the

(3d + 2)-TSDH assumption with non-negligible probability. More precisely, we construct

the (3d + 2)-TSDH adversary BTSDH that on input σ := (gk,P1, τ · P1, . . . , τ3d+2 · P1,P2,

τ · P2, . . . , τ3d+2 · P2) works as follows:

1. BTSDH samples random ρ′A, ρ′B, αA, αB, αC, β, γ ∈ Fr and uses those and the elements of σ

to construct the keypair (pk, vk) and extraction trapdoor trapE from the same distribution

as output by G(gk, (~A,~B, ~C, Z)). Every element of the keypair is of form p(τ) · P1 or

p(τ) · P2 for some polynomial p whose coefficients depend on ρ′A, ρ′B, αA, αB, αC, β, γ.

Moreover, the degree of p is at most 3d + 2, so BTSDH can always find the necessary

encodings of τi in its challenge. Just like G, BTSDH sets trapE := (ρ′A, ρ′B). The values

of τ and ρ′A, ρ′B, αA, αB, αC, β, γ are all random, so the pair ((pk, vk), trapE ) has the same

distribution as induced by G.

2. BTSDH runs the augmented QAP adversary A′ on (pk, vk, trapE ). When A′ returns the

tuple (~x, π, v′A(z), vB(z), vC(z), δ1, δ2, δ3), BTSDH parses the proof as π = (πA, π′A, πB,

π′B, πC, π′C, πK, πH).

3. Successful verification implies that e(vk~x + πA, πB) = e(πH, vkZ) · e(πC, vk1). The poly-

nomial Z(z) does not divide vA(z) · vB(z) − vC(z), and thus doesn’t divide q(z) :=

(vA(z) + δ1Z(z)) · (vB(z) + δ2Z(z))− (vC(z) + δ3Z(z)) either. BTSDH computes a root

d of Z(z) that is not a root of q(z) and writes q(z) as a(z)(z− d) + b where b 6= 0.

Note that e(vk~x +πA, πB) · e(πC, vk1)
−1 = e(P1,P2)

ρAρB(a(τ)(τ−d)+b) so we have e(P1,P2)
ρAρB(a(τ)(τ−d)+b) =

e(πH, vkZ) = e(πH, Z(τ)ρAρB · P2), or e(P1,P2)
a(τ)/b+ 1

τ−d = e(πH, Z(τ)/((τ − d)b) ·
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P2).

4. BTSDH uses terms of its challenge to compute T := e(P1,P2)
a(τ)/b andQ := Z(τ)/((τ−

d)b) · P2; it can always do so as deg a(z) ≤ 2d− 1 and deg Z(z) = d.

5. BTSDH computes Y := e(πH,Q) · T−1 and returns the pair (d, Y).

By construction Y = e(P1,P2)
1

τ−d so, whenever A′ returns a valid proof with vA(z) ·
vB(z)− vC(z) not divisible by Z(z), BTSDH wins the (3d + 2)-TSDH security game.

Lemma A.3.8. Assume that d(λ)-PDH assumption holds relative to bilinear group generator G.

Then for every security function λ : N→N, every quadratic arithmetic program (~A,~B, ~C, Z) of

degree d(λ), and every polynomial-size augmented adversary A′ (see Lemma A.3.6) we have the

following:

Pr


|~x| = n,

V(vk,~x, π) = 1,

and

r(z) 6∈ span(R)

∣∣∣∣∣∣∣∣∣∣
gk← G(1λ)

(pk, vk, trapS, trapE )← G(gk, (~A,~B, ~C, Z))

(~x, π, v′A(z), vB(z), vC(z), δ1, δ2, δ3)← A′(pk, vk, trapE )

 ≤ negl(λ) ,

where

r(z) := ρ′Azd+1(vA(z) + δ1Z(z)) + ρ′Bz2(d+1)(vB(z) + δ2Z(z)) + ρ′Aρ′Bz3(d+1)(vC(z) + δ3Z(z)) ,

vA(z) := A0(z) +
n

∑
i=1

xi Ai(z) + v′A(z) ,

R := {ρ′Azd+1Ai(z) + ρ′Bz2(d+1)Bi(z) + ρ′Aρ′Bz3(d+1)Ci(z)}m
i=0 ∪


ρ′Azd+1Z(z)

ρ′Bz2(d+1)Z(z)

ρ′Aρ′Bz3(d+1)Z(z)

 ,

and ρ′A, ρ′B refer to the elements sampled by G.

Proof. Assume that the statement is false and there exists an augmented adversary A′

for which the above probability is non-negligible. Then we can use A′ to break the

(4d + 4)-PDH assumption with non-negligible probability. More precisely, we construct the

(4d + 4)-PDH adversary BPDH that on input σ := (gk,P1, τ · P1, . . . , τ4d+4 · P1, τ4d+6 · P1,

. . . , τ8d+8 · P1,P2, τ · P2, . . . , τ4d+4 · P2, τ4d+6 · P2, . . . , τ8d+8 · P2) works as follows:

1. BPDH picks a random degree 4d + 5 polynomial a(z) such that, for each of the polyno-

mials p(z) ∈ R the coefficient of z4d+5 in a(z)p(z) is 0. Each such p(z) is of degree at

most 4d + 3, so by Lemma A.1.1 BPDH can always select such a(z).
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2. BPDH samples random ρ′A, ρ′B, αA, αB, αC, β′ ∈ Fr and uses the elements of σ to construct

the keypair (pk, vk) from the same distribution as output by G(gk, (~A,~B, ~C, Z)) for

β := β′a(τ). The terms pkA, pk′A, pkB, pk′B, pkC, pk′C, pkH, vkA, vkB, vkC, vkZ and vkIC can

be computed directly from the challenge, as they only require encodings of τi for

i ≤ 4d + 3. The terms pkK,i := β
(

Ai(τ)ρA + Bi(τ)ρB + Ci(τ)ρAρB
)
P1 are known linear

combinations of challenge elements and, by choice of a(z), do not involve the term

τd+5 · P1. Finally, BPDH samples γ′ ∈ F∗r , sets γ := γ′ρ′Azd+1Z(z) and computes

vkγ := γP2, vk1
βγ := γβP1 and vk2

βγ := γβP2. By the choice of γ, this computation

doesn’t require elements τ4d+5 · P1 and τ4d+5 · P2, which the challenge doesn’t include.

Note that β and γ are uniformly random, as β′ and γ′, respectively, are and therefore

the keypair constructed above has the same distribution as keypair output by G. Just

like G, BPDH sets trapE := (ρ′A, ρ′B).

3. BPDH runs the augmented QAP adversary A′ on (pk, vk, trapE ). When A′ returns the

eight-tuple (~x, π, v′A(z), vB(z), vC(z), δ1, δ2, δ3), BPDH parses the proof as π = (πA, π′A,

πB, π′B, πC, π′C, πK, πH).

4. The random choice of β′ hides all information about a(z) from the adversary, therefore

we can apply Lemma A.1.1: if r(z) is outside span(R), then r(z) · a(z) has a non-zero

coefficient for z4d+5. That is, r(z) · a(z) = ∑8d+8
i=0 cizi with c4d+5 6= 0. Because the

proof passes the verifiers tests, we have that γ · πK = γβ(ρ′Aτd+1(vA(τ) + δ1Z(τ)) +

ρ′Bτ2(d+1)(vB(τ) + δ2Z(τ)) + ρ′Aρ′Bτ3(d+1)(vC(τ) + δ3Z(τ))) · P1, i.e. πK = β′a(τ)r(τ) ·
P1.

5. BPDH uses πK and elements of its challenge to compute and return τ4d+5 · P1, as follows:

τ4d+5 · P1 =
1

β′c4d+5

πK −
8d+8

∑
i=0

i 6=4d+5

β′ciτ
i · P1

 .

We conclude that whenever A′ returns an accepting proof with r(z) not in the expected

span, BPDH correctly answers its challenge.

Proof of Theorem A.3.5. Assume, without loss of generality, that we have access to aug-

mented adversary A′ (see Lemma A.3.6 for details) and let (~x, π, v′A(z), vB(z), vC(z), δ1,

δ2, δ3) be the tuple returned by A′. We will show that, whenever the instance-proof pair

(~x, π) is accepted by the verifier, we can use the polynomials v′A(z), vB(z), vC(z) and

randomization terms δ1, δ2, δ3 to recover a full satisfying assignment~a for this instance.

Define polynomials vA(z) and r(z) as in Lemma A.3.8, that is, vA(z) := A0(z) +
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∑n
i=1 xi Ai(z) + v′A(z) and r(z) := ρ′Azd+1(vA(z) + δ1Z(z)) + ρ′Bz2(d+1)(vB(z) + δ2Z(z)) +

ρ′Aρ′Bz3(d+1)(vC(z) + δ3Z(z)). By Lemma A.3.8 we know that r(z) is in the span of a certain

set of m+ 4 polynomials, and therefore there exist m+ 4 field elements a0, . . . , am, δ′1, δ′2, δ′3 ∈
Fr such that:

r(z) =
m

∑
i=0

ai

(
ρ′Azd+1Ai(z) + ρ′Bz2(d+1)Bi(z) + ρ′Aρ′Bz3(d+1)Ci(z)

)
+ δ′1ρ′Azd+1Z(z) + δ′2ρ′Bz2(d+1)Z(z) + δ′3ρ′Aρ′Bz3(d+1)Z(z) .

We claim that this linear combination is necessarily tied to the QAP instance, and

we have a0 = 1 and ai = xi for 1 ≤ i ≤ n. To see that, we restrict our attention to

the contribution monomials of degrees d + 1, . . . , 2d + 1 make to the polynomial r(z)

and equate the coefficients. By the definition of r(z) we have r(z)[d + 1, . . . , 2d + 1] =

ρ′Azd+1(vA(z) + δ1Z(z)) = ρ′Azd+1(A0(z) + ∑n
i=1 xi Ai(z) + v′A(z) + δ1Z(z)), as all other

terms contribute monomials of degree at least 2d + 1. If we apply the same reasoning

to the span expression above we obtain r(z)[d + 1, . . . , 2d + 1] = ρ′Azd+1(∑m
i=0 ai Ai(z) +

δ′1Z(z)). Moreover, because the monomial z2d+1 arises only from the highest degree

term of zd+1Z(z) we get that δ1 = δ′1, and therefore A0(z) + ∑n
i=1 xi Ai(z) + v′A(z) =

∑m
i=0 ai Ai(z). Now, because the QAP is non-degenerate for inputs of size n, and the

spans span{A0(z), . . . , An(z)} and span{An+1(z), . . . , Am(z)} are disjoint, except at the

origin. Therefore, if we further restrict r(z)[d + 1, . . . , 2d + 1] to the subspace spanned by

{zd+1A0(z), . . . , zd+1An(z)}, all terms vanish except for zd+1A0(z), . . . , zd+1Ai(z), and we

have A0(z) + ∑n
i=1 xi Ai(z) = ∑n

i=0 ai Ai(z). Finally, the non-degeneracy of QAP also means

that polynomials A0(z), . . . , An(z) are all linearly independent, and therefore a0 = 1 and

ai = xi for 1 ≤ i ≤ n, as claimed.

By Lemma A.3.7, the polynomial Z(z) divides vA(z) · vB(z) − vC(z). Moreover, by

equating the coefficients for z2d+2, . . . , z3d+2 and z3d+3, . . . , z4d+3, respectively, we ob-

tain that vB(z) = B0(z) + ∑m
i=1 aiBi(z), and vC(z) = C0(z) + ∑m

i=1 aiCi(z). Therefore (~x,

(a1, . . . , am)) ∈ R(~A,~B,~C,Z), as the assignment (a1, . . . , am) both extends ~x, and also satisfies

the QAP divisibility property. We conclude that there exists the required QAP extractor:

EA performs the above steps and returns~a.

Remark A.3.9. The only reason to choose random γ is that we don’t know how to generate

an encoding of β in the (4d + 4)-PDH reduction, so we generate three values γ · P1 and

γβ · P1, γβ · P2 instead. However, we could set γ := ρ′Aτd+1Z(τ) without breaking
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the security proof. This is similar to how ρ is chosen in the DFGK proof system (see

Remark A.2.12).

Remark A.3.10. We choose ρA := ρ′Aτd+1 and ρB := ρ′Bτd+2, so that the polynomial

r(z), guaranteed by Lemma A.3.8 to be in the span of {β
(

Ai(τ)ρ
′
Aτd+1 + Bi(τ)ρ

′
Bτ2(d+1) +

Ci(τ)ρ
′
Aρ′Bτ3(d+1))}i, has clear domain separation. That is, τd+1, . . . , τ2d+1 correspond to

the witness prover used to compute vA(z); τ2d+2, . . . , τ3d+2 correspond to the witness

prover used to compute vB(z); and τ3d+3, . . . , τ4d+3 correspond to the witness prover

used to compute vC(z). The proof would still hold if ρ′A = ρ′B = 1 and would let us set

trapE := ⊥. A different choice, ρA = 1, ρB = τ2(d+1) and ρC = τd+1, would still achieve

domain separation, and let us reduce to a weaker PDH assumption. This requires including

τd+1 · P2 in the verification key and using it in the QAP divisibility check.

Remark A.3.11. Just like in the DFGK proof system (see Remark A.2.11) we can’t publish

more terms involving β than pkK, lest we risk breaking input consistency. That is, every

β term revealed needs to be present in the span guaranteed by Lemma A.3.8. This span,

however, requires significant restrictions for the main proof to go through. For example,

the non-degeneracy property of Definition A.3.2 directly translates to a span constraint.
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Public parameters. A prime r, two cyclic groups G1 and
G2 of order r with generators P1 and P2 respectively, and
a pairing e : G1 × G2 → GT (where GT is also cyclic of
order r).

(a) Key generator G

• INPUTS: quadratic arithmetic program (~A,~B, ~C, Z)

• OUTPUTS: proving key pk, verification key vk, simula-
tion trapdoor trapS and extraction trapdoor trapE

1. Sample two generators P1 ∈ G1, P2 ∈ G2 and seven
field elements τ, ρ′A, ρ′B, αA, αB, αC, β, γ ∈ Fr all at ran-
dom.

2. Extend ~A,~B, ~C via

Am+1 = Bm+2 = Cm+3 = Z ,

Am+2 = Am+3 = Bm+1 = Bm+3 = Cm+1 = Cm+2 = 0 .

3. Set ρA := ρ′Aτd+1, ρB := ρ′Bτ2(d+1).

4. Set pk := (gk, (~A,~B, ~C, Z), pkA, pk′A, pkB, pk′B, pkC, pk′C,
pkK, pkH) where for i = 0, 1, . . . , m + 3:

pkA,i := Ai(τ)ρAP1 , pk′A,i := Ai(τ)αAρAP1 ,

pkB,i := Bi(τ)ρBP2 , pk′B,i := Bi(τ)αBρBP1 ,

pkC,i := Ci(τ)ρAρBP1 , pk′C,i := Ci(τ)αCρAρBP1 ,

pkK,i := β
(

Ai(τ)ρA + Bi(τ)ρB + Ci(τ)ρAρB
)
P1 ,

and for i = 0, 1, . . . , d, pkH,i := τiP1.

5. Set vk := (gk, vk1, vkA, vkB, vkC, vkγ, vk1
βγ, vk2

βγ, vkZ, vkIC) where

vk1 := P2 , vkA := αAP2 , vkB := αBP1 , vkC := αCP2

vkγ := γP2 , vk1
βγ := γβP1 , vk2

βγ := γβP2 ,

vkZ := Z(τ)ρAρBP2 ,
(
vkIC,i

)n
i=0 :=

(
Ai(τ)ρAP1

)n
i=0 .

6. Set trapS := (gk,P1,P2, ρA, ρB, αA, αB, αC, β, τ).

7. Set trapE := (ρ′A, ρ′B) ∪ {(τ
i, αAτi, αBτi, αCτi) ·

(P1,P2)}4d+3
i=0

8. Output (pk, vk, trapS, trapE ).

(b) Simulator S

• INPUTS: simulation trapdoor trapS, input ~x ∈ Fn
r

• OUTPUTS: simulated proof π

1. Sample vA, vB, vC, h ∈ Fr at random.

2. Compute

φA := vA − A0(τ)−∑n
i=1 xi Ai(τ) ,

h := (vAvB − vC)/Z(τ) ,

and set:

πA := φAρAP1, π′A := φAαAρAP1,

πB := vBρBP2, π′B := vBαBρBP1

πC := vCρAρBP1, π′C := vCαCρAρBP1,

πH := hP1, πK := β(vAρA + vBρB + vCρAρB)P1 .

3. Output π := (πA, π′A, πB, π′B, πC, π′C, πK, πH)

(c) Prover P

• INPUTS: proving key pk, input ~x ∈ Fn
r , and assignment

~a ∈ Fm
r , where (~x,~a) ∈ R(~A,~B,~C,Z).

• OUTPUTS: proof π

1. Sample δ1, δ2, δ3 ∈ Fr at random.

2. Compute ~h = (h0, . . . , h0) ∈ Fd+1
r , the coefficients

of the polynomial H(z) := vA(z)vB(z)−vC(z)
Z(z) where

vA, vB, vC ∈ Fr[z] are as follows:

vA(z) := A0(z) + ∑m
i=1 ai Ai(z) + δ1Z(z) ,

vB(z) := B0(z) + ∑m
i=1 aiBi(z) + δ2Z(z) ,

vC(z) := C0(z) + ∑m
i=1 aiCi(z) + δ3Z(z) .

3. Set ˜pkA := “same as pkA, but with pkA,i = 0 for i = 0, 1, . . . , n”.
Set ˜pk′A := “same as pk′A, but with pk′A,i = 0 for i = 0, 1, . . . , n”.

4. Letting~c := (1 ◦~a ◦ δ1 ◦ δ2 ◦ δ3) ∈ F4+m
r , compute

πA := 〈~c, ˜pkA〉, π′A := 〈~c, ˜pk′A〉, πB := 〈~c, pkB〉, π′B := 〈~c, pk′B〉,
πC := 〈~c, pkC〉, π′C := 〈~c, pk′C〉, πK := 〈~c, pkK〉, πH := 〈~h, pkH〉.

5. Output π := (πA, π′A, πB, π′B, πC, π′C, πK, πH).

(d) Verifier V

• INPUTS: verification key vk, input ~x ∈ Fn
r , and proof π

• OUTPUTS: decision bit

1. Compute vk~x := vkIC,0 + ∑n
i=1 xi · vkIC,i ∈ G1.

2. Check validity of knowledge commitments for A, B, C:

e(πA, vkA) = e(π′A, vk1) , e(vkB, πB) = e(π′B, vk1) ,

e(πC, vkC) = e(π′C, vk1) .

3. Check that the same same coefficients were used:

e(πK, vkγ) = e(vk~x + πA + πC, vk2
βγ) · e(vk1

βγ, πB) .

4. Check QAP divisibility:

e(vk~x + πA, πB) = e(πH, vkZ) · e(πC, vk1) .

5. If all checks pass, output b := 1 (accept), otherwise
output b := 0 (reject).

Figure A.2: The zk-SNARK protocol of Parno et al. [PGHR13]. (More precisely, the
protocol above differs from that in [PGHR13] in two ways. First, it does not assume that
G1 = G2. Second, it obtains a verification key whose size grows as n + o(n), rather than
3n + o(n), by leveraging the non-degeneracy property in [BCTV14c, Lemma 2.5].)
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